首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A 13-kDa fatty acid binding protein (FABP) (Fh13) has been isolated from the cytosol of adult Fasciola hepatica and its physicochemical and binding characteristics determined. Fh13 appears to exist as a dimer in native solution. Binding of the fluorescent fatty acid analogue 11-((5-dimethyl aminonaphthalene-1-sulfonyl) amino) undecanoic acid (DAUDA) to Fh13 results in changes in the emission spectrum, which are reversed by oleic acid. The binding activity for DAUDA determined from titration experiments revealed a single binding site per monomeric unit with Kd of 1.5 microM. The displacement of DAUDA by competitive nonfluorescent ligands allowed Kd values for oleic (2.5 microM), retinoic (2.8 microM), palmitic (4.1 microM) and arachidonic acid (6.1 microM) to be calculated. Ten commonly used anthelmintics were evaluated for binding to Fh13, but only bithionol showed binding activity commensurate with those of the putative natural ligands (Kd 6.8 microM).  相似文献   

2.
Clonorchis sinensis fatty acid-binding protein (CsFABP) belongs to a multigene family of lipid-binding proteins and is considered to be a promising vaccine candidate for human clonorchiasis. In this study, binding characteristics of CsFABP have been examined for the first time. The recombinant CsFABP (rCsFABP) was found to bind 11-(dansylamino) undecanoic acid (DAUDA), causing a blue shift in the fluorescence emission from 543 to 531 nm with an excitation wavelength of 345 nm and a substantial increase in fluorescence intensity. Fluorimetric titration of rCsFABP with DAUDA exhibited an apparent dissociation constant (K (d)) of 1.58 ± 0.14 μM. In the competitive experiment, the rCsFABP efficiently bound saturated C(10)-C(18) fatty acids and unsaturated fatty acids (oleic acid and linoleic acid), and the latter presented the higher affinity. Furthermore, quantitative RT-PCR and western blotting analysis revealed that CsFABP mRNA and protein were differentially expressed throughout the developmental cycle stages of the parasite, which occur in the definitive host (metacercariae, adult worms, and eggs). In addition, immunolocalization assay showed that CsFABP was localized on the vitelline gland, tegument, intestine, seminal vesicle, eggs in uterus, ovary, and testicle of C. sinensis adult worm, as well as on the vitelline gland of metacercaria. Intriguingly, the surface tissue of the bile duct where C. sinensis resided in the infected Sprague-Dawley rat was also strongly labeled, implying that CsFABP may possibly mediate direct interactions with host cells as a component of excretory/secretory products.  相似文献   

3.
Abstract

Adipocyte fatty acid binding protein (A-FABP) is a potential drug target for treatment of diabetes, obesity and atherosclerosis. Molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations were combined to probe effect of electrostatic interactions of residues R78, R106 and R126 with inhibitors ZGB, ZGC and IBP on structural stability of three inhibitor/A-FABP complexes. The results indicate that mutation R126A produces significant influence on polar interactions of three inhibitors with A-FABP and these interactions are main force for driving the conformational change of A-FABP. Analyses on hydrogen bond interactions show that the decrease in hydrogen bonding interactions of residues R126 and Y128 with three inhibitors and the increase in that of K58 with inhibitors ZGC and IBP in the R126A mutated systems mostly regulate the conformational changes of A-FABP. This work shows that R126A can generate a significant perturbation on structural stability of A-FABP, which implies that R126 is of significance in inhibitor bindings. We expect that this study can provide a theoretical guidance for design of potent inhibitors targeting A-FABP.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
1. The fluorescent fatty acid probe 11-(dansylamino)undecanoic acid (DAUDA) binds with high affinity to bovine and human serum albumin (BSA and HSA) at three sites. 2. The Kd of the primary binding site could not be determined; however, the two secondary sites appeared to be equivalent, with an apparent Kd of 8 x 10(-7) M for both BSA and HSA. 3. The spectral characteristics of DAUDA when bound to the primary site of the two albumins were different, with HSA producing a greater fluorescence enhancement and emission maximum at a shorter wavelength (480 nm) than for BSA (495 nm). 4. Displacement studies indicated that the DAUDA-binding sites were not equivalent to the primary long-chain fatty acid-binding sites on albumin, but corresponded to the bilirubin sites. Fatty acyl-CoAs also bind to the bilirubin sites, as do medium-chain fatty acids. 5. The solubility, stability and spectral properties of DAUDA make it an excellent probe for investigating the bilirubin-binding sites of albumin, particularly HSA.  相似文献   

5.
Ag-NPA-1 (AgFABP), a 15 kDa lipid binding protein (LBP) from Ascaridia galli, is a member of the nematode polyprotein allergen/antigen (NPA) family. Spectroscopic analysis shows that Ag-NPA-1 is a highly ordered, alpha-helical protein and that ligand binding slightly increases the ordered secondary structure content. The conserved, single Trp residue (Trp17) and three Tyr residues determine the fluorescence properties of Ag-NPA-1. Analysis of the efficiency of the energy transfer between these chromophores shows a high degree of Tyr-Trp dipole-dipole coupling. Binding of fatty acids and retinol was accompanied by enhancement of the Trp emission, which allowed calculation of the affinity constants of the binary complexes. The distance between the single Trp of Ag-NPA-1 and the fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1- sulfonyl)amino]undecanoic acid (DAUDA) from the protein binding site is 1.41 nm as estimated by fluorescence resonance energy transfer. A chemical modification of the Cys residues of Ag-NPA-1 (Cys66 and Cys122) with the thiol reactive probes 5-({[(2-iodoacetyl)amino]ethyl}amino) naphthalene-1-sulfonic acid (IAEDANS) and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD), followed by MALDI-TOF analysis showed that only Cys66 was labeled. The observed similar affinities for fatty acids of the modified and native Ag-NPA-1 suggest that Cys66 is not a part of the protein binding pocket but is located close to it. Ag-NPA-1 is one of the most abundant proteins in A. galli and it is distributed extracellularly mainly as shown by immunohistology and immunogold electron microscopy. This suggests that Ag-NPA-1 plays an important role in the transport of fatty acids and retinoids.  相似文献   

6.
A fatty acid-binding protein from the nematode Ascaridia galli was characterized. The gene was isolated and recombinantly expressed in Escherichia coli. According to the deduced amino acid sequence A. galli fatty acid-binding protein (AgFABP) belongs to the family of nematode polyprotein allergens, as shown by Western blotting and PCR analysis with genomic DNA and cDNA. Both native and recombinant proteins bind fatty acids and retinoids with high affinity. The fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino] undecanoic acid (DAUDA) shows substantial changes in its emission spectrum when bound to AgFABP; this binding is reversed by fatty acids such as oleate. Moreover, changes of the intrinsic fluorescence of retinol and retinoic acid confirm retinoid binding activity of AgFABP. Fluorescence titration experiments with DAUDA indicate stoichiometric binding to a single binding site per monomer unit with affinities (Kd) of 1.6 and 1.8 x 10(-7) m for native and the recombinant protein, respectively. The apparent binding affinities of the nonfluorescent ligands were calculated in displacement experiments with DAUDA and values in the same range were obtained for myristic, palmitic, oleic, linoleic, arachidonic and retinoic acid. Additionally, the binding affinity of AgFABP for oleate and palmitate was determined by direct and indirect radiochemical analysis and the values obtained were similar to those from the fluorescent experiments. Both proteins show a preference for the binding of long-chain saturated and unsaturated fatty acids, but not for short chain (C3-C12) and branched fatty acids, cholesterol and tryptophan.  相似文献   

7.
Zn-alpha(2)-glycoprotein (ZAG) is a member of the major histocompatibility complex (MHC) class I family of proteins and is identical in amino acid sequence to a tumor-derived lipid-mobilizing factor associated with cachexia in cancer patients. ZAG is present in plasma and other body fluids, and its natural function, like leptin's, probably lies in lipid store homeostasis. X-ray crystallography has revealed an open groove between the helices of ZAG's alpha(1) and alpha(2) domains, containing an unidentified small ligand in a position similar to that of peptides in MHC proteins (Sanchez, L. M., Chirino, A. J., and Bjorkman, P. J. (1999) Science 283, 1914-1919). Here we show, using serum-derived and bacterial recombinant protein, that ZAG binds the fluorophore-tagged fatty acid 11-(dansylamino)undecanoic acid (DAUDA) and, by competition, natural fatty acids such as arachidonic, linolenic, eicosapentaenoic, and docosahexaenoic acids. Other MHC class I-related proteins (FcRn, HFE, HLA-Cw*0702) showed no such evidence of binding. Fluorescence and isothermal calorimetry analysis showed that ZAG binds DAUDA with K(d) in the micromolar range, and differential scanning calorimetry showed that ligand binding increases the thermal stability of the protein. Addition of fatty acids to ZAG alters its intrinsic (tryptophan) fluorescence emission spectrum, providing a strong indication that ligand binds in the expected position close to a cluster of exposed tryptophan side chains in the groove. This study therefore shows that ZAG binds small hydrophobic ligands, that the natural ligand may be a polyunsaturated fatty acid, and provides a fluorescence-based method for investigating ZAG-ligand interactions.  相似文献   

8.
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from substrate firefly luciferin by a sequence of reactions that require Mg-ATP and molecular oxygen. We had previously developed [Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319] a molecular graphics-based working model of the luciferase active site starting with the first X-ray structure [Conti, E., Franks, N. P., and Brick, P. (1996) Structure 4, 287-298] of the enzyme without bound substrates. In our model, the luciferin binding site contains 15 residues that are within 5 A of the substrate. Using site-directed mutagenesis, we made changes at all of these residues and report here the characterization of the corresponding expressed and purified proteins. Of the 15 residues studied, 12 had a significantly (>or=4-fold K(m) difference) altered binding affinity for luciferin and seven residues, spanning the primary sequence region Arg218-Ala348, had substantially (>or=30 nm) red-shifted bioluminescence emission maxima when mutated. We report here an interpretation of the roles of the mutated residues in substrate binding and bioluminescence color determination. The results of this study generally substantiate the accuracy of our model and provide the foundation for future experiments designed to alter the substrate specificity of firefly luciferase.  相似文献   

9.
Liver fatty acid-binding protein (FABP) is able to bind to anionic phospholipid vesicles under conditions of low ionic strength. This binding results in the release of ligand, the fluorescent fatty acid analogue 11-dansylaminoundecanoic acid (DAUDA), with loss of fluorescence intensity (Davies, J. K., Thumser, A. E. A., and Wilton, D. C. (1999) Biochemistry 38, 16932-16940). Using a strategy of charge reversal mutagenesis, the potential role of specific cationic residues in promoting interfacial binding of FABP to anionic phospholipid vesicles has been investigated. Cationic residues chosen included those within the alpha-helical region (Lys-20, Lys-31, and Lys-33) and those that make a significant contribution to the positive surface potential of the protein (Lys-31, Lys-36, Lys-47, Lys-57, and Arg-126). Only three cationic residues make a significant contribution to interfacial binding, and these residues (Lys-31, Lys-36, and Lys-57) are all located within the ligand portal region, where the protein may be predicted to exhibit maximum disorder. The binding of tryptophan mutants, F3W, F18W, and C69W, to dioleoylphosphatidylglycerol vesicles, containing 5 mol% of the fluorescent phospholipid dansyldihexadecanoylphosphatidylethanolamine, was monitored by fluorescence resonance energy transfer (FRET). All three mutants showed enhanced dansyl fluorescence due to FRET on addition of phospholipid to protein; however, this fluorescence was considerably greater with the F3W mutant, consistent with the N-terminal region of the protein coming in close proximity to the phospholipid interface. These results were confirmed by succinimide quenching studies. Overall, the results indicate that the portal region of liver FABP and specifically Lys-31, Lys-36, and Lys-57 are involved in the interaction with the interface of anionic vesicles and that the N-terminal region of the protein undergoes a conformational change, resulting in DAUDA release.  相似文献   

10.
Tyrosine-57 (Y57) and methionine-107 (M107) have been identified in the binding site of the sex steroid binding protein (SBP) (or sex hormone binding globulin) of human plasma by replacing the two amino acids with a number of residues of varying structure. Replacement of Y57 with phenylalanine resulted in a fourfold increase in the K(d) of 5 alpha-dihydrotestosterone but left the K(d) of 17 beta-estradiol unchanged. Except in two cases, no further loss in binding took place when replacing Y57 with other residues, suggesting that the phenolic group of Y57 may form a hydrogen bond with the ligand. Replacement of M107 with isoleucine increased the 5 alpha-dihydrotestosterone K(d) fourfold to a value equal to that of rabbit SBP, which contains isoleucine at the corresponding position; however, the K(d) of 17 beta-estradiol remained unchanged. Replacement of M107 with threonine resulted in a tenfold decrease in 5 alpha-dihydrotestosterone binding affinity, whereas replacement with leucine left the K(d) unchanged. These data indicate that substitutions on the beta-carbon of the amino acid side-chain at position 107 causes significant loss of binding affinity but, as in the case of Y57, the activity was not totally eliminated. We conclude that Y57 and M107 form part of a structural motif within the steroid binding site and specifically contribute binding energy to ring A of 5 alpha-dihydrotestosterone but not to ring A of 17 beta-estradiol. We also propose that the integrated contribution of several side chains may be required to optimize the ligand affinity of the steroid binding site. This proposal may fit a 'lock and key' model where little movement of the side chains occurs during binding as might be expected for a rigid structure like the steroid nucleus.  相似文献   

11.
The structure and dynamics of the fatty acid binding cavity in I-FABP (rat intestinal fatty acid binding protein) were analyzed. In the crystal structure of apo I-FABP, the probe occupied cavity volume and surface are 539+/-8 A3 and 428 A2, respectively (1.4 A probe). A total of 31 residues contact the cavity with their side chains. The side-chain cavity surface is partitioned according to the residue type as follows: 36-39% hydrophobic, 21-25% hydrophilic, and 37-43% neutral or ambivalent. Thus, the cavity surface is neither like a typical protein interior core, nor is like a typical protein external surface. All hydrophilic residues that contact the cavity-with the exception of Asp74-are clustered on the one side of the cavity. The cavity appears to expand its hydrophobic surface upon fatty acid binding on the side opposite to this hydrophilic patch. In holo I-FABP the fatty acid chain interactions with the hydrophilic side chains are mediated by water molecules. Molecular dynamics (MD) simulation of fully solvated apo I-FABP showed global conformational changes of I-FABP, which resulted in a large, but seemingly transient, exposure of the cavity to the external solvent. The packing density of the side chains lining the cavity, studied by Voronoi volumes, showed the presence of two distinctive small hydrophobic cores. The MD simulation predicts significant structural perturbations of the cavity on the subnanosecond time scale, which are capable of facilitating exchange of I-FABP internal water.  相似文献   

12.
Gerharz T  Reinelt S  Kaspar S  Scapozza L  Bott M 《Biochemistry》2003,42(19):5917-5924
The sensor kinase CitA and the response regulator CitB of Klebsiella pneumoniae form the paradigm of a subfamily of bacterial two-component regulatory systems that are capable of sensing tri- or dicarboxylates in the environment and then induce transporters for the uptake of these compounds. We recently showed that the separated periplasmic domain of CitA, termed CitAP (encompasses residues 45-176 supplemented with an N-terminal methionine residue and a C-terminal hexahistidine tag), is a highly specific citrate receptor with a K(d) of 5.5 microM at pH 7. To identify positively charged residues involved in binding the citrate anion, each of the arginine, lysine, and histidine residues in CitAP was exchanged for alanine, and the resulting 17 muteins were analyzed by isothermal titration calorimetry (ITC). In 12 cases, the K(d) for citrate was identical to that of wild-type CitAP or slightly changed (3.9-17.2 microM). In one case (R98A), the K(d) was 6-fold decreased (0.8 microM), whereas in four cases (R66A, H69A, R107A, and K109A) the K(d) was 38- to >300-fold increased (0.2 to >1 mM). The secondary structure of the latter five proteins in their apo-form as deduced from far-UV circular dichroism (CD) spectra did not differ from the apo-form of wild-type CitAP; however, all of them showed an increased thermostability. Citrate increased the melting point (T(m)) of wild-type CitAP and mutein R98A by 6.2 and 9.5 degrees C, respectively, but had no effect on the T(m) of the four proteins with disturbed binding. Three of the residues important for citrate binding (R66, H69, and R107) are highly conserved in the CitA subfamily of sensor kinases, indicating that they might be involved in ligand binding by many of these sensor kinases.  相似文献   

13.
Although each of the five mammalian long-chain acyl-CoA synthetases (ACSL) can bind saturated and unsaturated fatty acids ranging from 12 to 22 carbons, ACSL4 prefers longer chain polyunsaturated fatty acids. In order to gain a better understanding of ACSL4 fatty acid binding, we based a mutagenesis approach on sequence alignments related to ttLC-FACS crystallized from Thermus thermophilus HB8. Four residues selected for mutagenesis corresponded to residues in ttLC-FACS that comprise the fatty acid binding pocket; the fifth residue aligned with a region thought to be involved in fatty acid selectivity of the Escherichia coli acyl-CoA synthetase, FadD. Changing an amino acid at the entry of the putative fatty acid binding pocket, G401L, resulted in an inactive enzyme. Mutating a residue near the pocket entry, L399M, did not significantly alter enzyme activity, but mutating a residue at the hydrophobic terminus of the pocket, S291Y, altered ACSL4's preference for 20:5 and 22:6 and increased its apparent K(m) for ATP. Mutating a site in a region previously identified as important for fatty acid binding also altered activation of 20:4 and 20:5. These studies suggested that the preference of ACSL4 for long-chain polyunsaturated fatty acids can be modified by altering specific amino acid residues.  相似文献   

14.
The principal lipid binding protein in tears, tear lipocalin (TL), binds acid and the fluorescent fatty acid analogs, DAUDA and 16-AP at one site TL compete for this binding site. A fluorescent competitive binding assay revealed that apo-TL has a high affinity for phospholipids and stearic acid (Ki) of 1.2 microM and 1.3 microM, respectively, and much less affinity for cholesterol (Ki) of 15.9 of the hydrocarbon chain. TL binds most strongly the least soluble lipids permitting these lipids to exceed their maximum solubility in aqueous solution. These data implicate TL in solubilizing and transporting lipids in the tear film. Phenylalanine, tyrosine and cysteine+ were substituted for TRP 17, the only invariant residue throughout the lipocalin superfamily. Cysteine substitution resulted in some loss os secondary structure, relaxation of aromatic side chain rigidity, decreased binding affinity for DAUDA and destabilization of structure. Mutants of TL, W17Y, and W17F showed a higher binding affinity for DAUDA than wild-type TL. Comparison of the results of the tryptophan 17 substitution in lipocalin with those of tryptophan 19 substitution in beta-lactoglobulin revealed important differences in binding characteristics that reflect the functional heterogeneity within the lipocalin family.  相似文献   

15.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

16.
11-(Dansylamino) undecanoic acid (DAUDA) is a dansyl-type fluorophore and has widely used as a probe to determine the binding site for human serum albumin (HSA). Here, we reported that structure of HSA-Myristate-DAUDA ternary complex and identified clearly the presence of two DAUDA molecules at fatty acid (FA) binding site 6 and 7 of HSA, thus showing these two sites are weak FA binding sites. This result also show that DAUDA is an appropriate probe for FA site 6 and 7 on HSA as previous studied, but not a good probe of FA binding site 1 that is likely bilirubin binding site on HSA.  相似文献   

17.
Activated platelets promote intrinsic factor X-activating complex assembly by presenting high affinity, saturable binding sites for factor IXa mediated by two disulfide-constrained loop structures (loop 1, Cys88-Cys99; loop 2, Cys95-Cys109) within the second epidermal growth factor (EGF2) domain. To identify amino acids essential for factor X activation complex assembly, recombinant factor IXa point mutants in loop 1 (N89A, I90A, K91A, and R94A) and loop 2 (D104A, N105A, and V107A) were prepared. All seven mutants were similar to the native factor IXa by SDS-PAGE, active site titration, and content of gamma-carboxyglutamic acid residues. Kinetic constants obtained by either titrating factor X or factor VIIIa on SFLLRN-activated platelets or phospholipid vesicles revealed near normal values of Km(app) and Kd(app)FVIIIa for all mutants, indicating normal substrate and cofactor binding. In a factor Xa generation assay in the presence of activated platelets and cofactor factor VIIIa, compared with native factor IXa (Kd(app)FIXa approximately 1.1 nm, Vmax approximately 12 nm min(-1)), N89A displayed an increase of approximately 20-fold in Kd(app)FIXa and a decrease of approximately 20-fold in Vmax; I90A had an increase of approximately 5-fold in Kd(app)FIXa and approximately 10-fold decrease in Vmax; and V107A had an increase of approximately 3-fold in Kd(app)FIXa and approximately 4-fold decrease in Vmax. We conclude that residues Asn89, Ile90, and Val107 within loops 1 and 2 (Cys88-Cys109) of the EGF2 domain of factor IXa are essential for normal interactions with the platelet surface and for the assembly of the factor X-activating complex on activated platelets.  相似文献   

18.
This paper describes the consequences of alanine-scanning mutagenesis on 28 positions of the second epidermal growth factor (EGF-2) domain of factor IX. We identified four positions of Gln(97), Phe(98), Tyr(115), and Leu(117) that are critical for secretion of factor IX. Of the remaining mutations, 4 mutants (V86A, E113A, K122A, and S123A) are as active as wild-type factor IX (IXwt); 16 (D85A, K100A, N101A, D104A, N105A, R116A, E119A, T87A, I90A, K91A, R94A, E96A, S102A, K106A, T112A, and N120A) retain reduced but detectable activity, and 4 (N89A, N92A, G93A, and V107A) are nearly inert in the clotting assay. Both factor XIa and the factor VIIa-tissue factor complex effectively catalyzed the activation of these mutants except N89A. The mutant V107A failed to form the factor tenase complex with factor VIIIa because of a 35-fold increase in K(d). The mutants N89A and N92A did not compete with factor IXwt for factor VIIIa binding, and G93A exhibited a 6-fold increase in K(i) values in the competitive binding assay. It appears that mutations at these positions have significantly affected the interaction between factor IX and factor VIIIa, although other mutations had little effect on the binding of factor IX to factor VIIIa. Mutations in two regions, Thr(87)-Gly(93) and Asn(101)-Val(107), significantly increased the K(m) value of factor IXa (2-10-fold) in cleavage of factor X in the absence of factor VIIIa. In the presence of factor VIIIa, the catalytic efficiency of each mutant toward factor X paralleled its clotting activity. Briefly, we propose two relatively distinctive functions of factor IX for two adjacent regions in the EGF-2 domain; the first loop region (residues 89-94) is involved with the binding of its cofactor, factor VIIIa, and the third loop with connected beta-sheets (residues 102-108) is involved in the proper binding to the substrate, factor X.  相似文献   

19.
Davies JK  Thumser AE  Wilton DC 《Biochemistry》1999,38(51):16932-16940
A number of intracellular proteins bind to negatively charged phospholipid membranes, and this interfacial binding results in a conformational change that modulates the activity of the protein. Using a fluorescent fatty acid analogue, 11-[5-(dimethylamino)naphthalenesulfonyl]undecanoic acid (DAUDA), it is possible to demonstrate the release of this ligand from recombinant rat liver FABP in the presence of phospholipid vesicles that contain a significant proportion of anionic phospholipids. The ligand release that is observed with anionic phospholipids is sensitive to the ionic strength of the assay conditions and the anionic charge density of the phospholipid at the interface, indicating that nonspecific electrostatic interactions play an important role in the process. The stoichiometric relationship between anionic phospholipid and liver FABP suggests that the liver FABP coats the surface of the phospholipid vesicle. The most likely explanation for ligand release is that interaction of FABP with an anionic membrane interface induces a rapid conformational change, resulting in a reduced affinity of DAUDA for the protein. The nature of this interaction involves both electrostatic and nonpolar interactions as maximal release of liver FABP from phospholipid vesicles with recovery of ligand binding cannot be achieved with high salt and requires the presence of a nonionic detergent. The precise interfacial mechanism that results in the rapid release of ligand from L-FABP remains to be determined, but studies with two mutants, F3W and F18W, suggest the possible involvement of the amino-terminal region of the protein in the process. The conformational change linked to interfacial binding of this protein could provide a mechanism for fatty acid targeting within the cell.  相似文献   

20.
Previous studies have shown that many arachidonic acid metabolites bind to human serum albumin (HSA) and that the metabolism of these molecules is altered as a result of binding. The present study attempted to gain insights into the mechanisms by which prostaglandins bound to subdomain 2A of HSA are metabolized by catalytic processes. The breakdown of the prostaglandin 15-keto-PGE(2) to 15-keto-PGA(2) and 15-keto-PGB(2) in the presence of wild-type HSA and a number of subdomain 2A mutants was examined using a previously validated spectroscopic method which monitors absorbance at 505 nm. The species examined using this method were wild-type HSA, K195M, K199M, F211V, W214L, R218M, R218P, R218H, R222M, H242V, R257M, and bovine serum albumin. Previous studies of HSA-mediated catalysis indicated that the breakdown of HSA-bound prostaglandins results from an alkaline microenvironment in the binding site. Our results show that the catalytic breakdown of HSA-bound 15-keto-PGE(2) to 15-keto-PGB(2) results from two specific processes which are modulated by specific amino acid residues. Specifically, some amino acid residues modulate the rate of step 1, the conversion of 15-keto-PGE(2) to 15-keto-PGA(2), while other residues modulate the rate of step 2, the conversion of 15-keto-PGA(2) to 15-keto-PGB(2). Some residues modulate the rate of steps 1 and 2. In total, while our results support the involvement of certain basic amino acid residues in the catabolism of HSA-bound 15-keto-PGE(2), our data suggest that metabolism of HSA-bound prostaglandins may be a more complex and specific process than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号