首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ESR spectra of the carbonmonoxy, oxy, and deoxy derivatives of hemoglobin Izu [Hb Izu (Macaca): beta 83 (EF 7) Gly leads to Cys] labeled at cysteine beta 83 with maleimide spin label have been observed in the presence and absence of 2,3-diphosphoglycerate and inositol hexaphosphate. The tau c values obtained from the spectra indicated that inositol hexaphosphate binds to all the derivatives of Hb Izu, but 2,3-diphosphoglycerate only to the deoxy derivatives.  相似文献   

2.
The aggregation of deoxyhemoglobin dimers was studied by dropping the pH of a dilute solution of deoxyhemoglobin originally at high pH. In the presence of inositol hexaphosphate, a sharp increase in the rate of dimer association was observed. At higher concentrations of the phosphate, the rate decreased to a value close to that seen in the absence of phosphate. These observations require that inositol hexaphosphate binds to deoxyhemoglobin dimers. The dependence of the aggregation rate on phosphate concentration occurs because the reaction of a dimer containing bound phosphate with a phosphate-free dimer is 30 to 50 times faster than either the association of phosphate-free dimers or the association of dimers both containing bound phosphate.  相似文献   

3.
The formation of deoxyhemoglobin was examined by measuring the heme spectral change that accompanies the aggregation of isolated alpha and beta chains. At low hemeconcentrations (less than 10(-5) M), tetramer formation can be described by two consecutive, second order reactions representing the aggregation of monomers followed by the association of alphabeta dimers. At neutral pH, the rates of monomer and dimer aggregation are roughly the same, approximately 5 X 10(5) M(-1) X(-1) at 20 degrees. Raising or lowering the pH results in a uniform decrease of both aggregation rates due presumably to repulsion of positively charged subunits at acid pH and repulsion of negatively charged subunits at alkaline pH. Addition of p-hydroxymercuribenzoate to alpha chains lowers the rate of monomer aggregation whereas addition of mercurials to the beta subunits appears to lower both the rate of monomer and the rate of dimer aggregation. At high heme concentrations (greater than 10(-5) M) or in the presence of organic phosphates, the rate of chain aggregation becomes limited, in part, by the slow dissociation of beta chain tetramers. In the case of inositol hexaphosphate, the rate of hemoglobin formation exhibits a bell-shaped dependence on phosphate concentration. When intermediate concentrations of inositol hexaphosphate (approximately 10(-4 M) are preincubated with beta subunits, a slow first order time course is observed and exhibits a half-time of about 8 min. As more inositol hexaphosphate is added, the chain aggregation reaction begins to occur more rapidly. Eventually at about 10(-2) M inositol hexaphospate, the time course becomes almost identical to that observed in the absence of phosphates. The increase in the velocity of the chain aggregation reaction at high phosphate concentrations suggests strongly that inositol hexaphosphate binds to beta monomers and, if added in sufficiently large amounts, promotes beta4 dissociation. A quantitative analysis of these results showed that the affinity of beta monomers for inositol hexaphosphate is the same as that of alphabeta dimers. Only when tetramers are formed, either alpha2beta2 or beta4, is a marked increase in affinity for inositol hexaphosphate observed.  相似文献   

4.
Five- and six-coordinate nitrosyl hemes have been prepared and their infrared, electron paramagnetic resonance (EPR), and visible-Soret spectra compared with the corresponding spectra for nitrosyl hemoglobin A (Hba-NO) determined both in the presence and the absence of inositol hexaphosphate (IHP). The five- and six-coordinate NO complexes prepared from either dipyridine or pyridine carbonyl protoheme dimethyl ester had N-O stretch bands (nuno) near 1675 and 1625 cm-1, respectively. These frequencies are sensitive to change in solvent (nuno decreased as the dipole moment of the solvent increased) and, with six-coordinate species, to changes in trans ligand. However, these solvent and trans ligand effects were small compared with the difference (ca. 50 cm-11) between five- and six -coordinate species. The nature of the trans ligand affected the relative proportions of the two...  相似文献   

5.
Sickle cell nitrosyl hemoglobin was examined for gelation by an ultracentrifugal method previously described (Briehl &; Ewert, 1973) and by birefringence. In the presence of inositol hexaphosphate gelation which exhibited the endothermic temperature dependence seen in gels of deoxyhemoglobin S was observed by both techniques. In the absence of inositol hexaphosphate no gelation was observed, nor did nitrosyl hemoglobin A exhibit gelation. On the assumption that gelation is dependent on the deoxy or T (low ligand affinity) as opposed to the oxy or R (high ligand affinity) quaternary structure this supports the conclusion that nitrosyl hemoglobin S in inositol hexaphosphate assumes the T structure, in contrast to the other liganded ferrohemoglobin derivatives oxy and carbon monoxide hemoglobin. Assuming further that the quaternary structures and isomerizations are the same in hemoglobins A and S it can also be concluded that nitrosyl hemoglobin A in inositol hexaphosphate assumes the T state. Since no gelation was seen in stripped nitrosyl hemoglobin S, inositol hexaphosphate serves to effect an R to T switch in this derivative. Thus R-T isomerization in nitrosyl hemoglobin occurs without change in ligand binding at the sixth position of the heme group confirming the conclusion of Salhany (1974) and Salhany et al. (1974).Lowering of the pH toward 6 favors gelation of NO hemoglobin S as it does of deoxy and aquomethemoglobin S (Briehl &; Ewert, 1973,1974), consistent with a favoring of the T structure due to strengthening of the interchain salt bridges and the binding of inositol hexaphosphate and/or changes in site-to-site interactions on which gelation depends.  相似文献   

6.
The observed static difference spectrum produced by inositol hexaphosphate binding to methemoglobin is the sum of a very fast and a slow spectral transition. The more rapid absorbance change is too fast to be measured by stopped flow techniques, whereas the slow change exhibits a half-time in the range 1 to 6 s. From the pH dependence of the rapidly formed difference spectrum and from a series of heme ligand binding studies, the rapid phase is interpreted to reflect a localized tertiary conformational change which immediately accompanies inositol hexaphosphate binding and results in a selective increase in spin and reactivity of the beta chain heme groups. In contrast, the slow phase appears to reflect a first order isomerization process which involves only a small portion (less than 10%) of the hemoglobin molecules and results primarily in a marked alteration of the spectral properties of the alpha chains with little change in spin. While the rapid spectral transition cannot be directly related to the overall quaternary transition which occurs during oxygen binding to ferrous deoxyhemoglobin, the slow spectral transition may represent the abortive formation of a deoxyhemoglobin A-like conformation which is inhibited in both rate and extent by the presence of water molecules bound to the heme iron atoms.  相似文献   

7.
The proton nuclear magnetic resonance spectra of carp hemoglobin (Hb) in the unligated deoxy and ligated met-cyano and met-azido forms have been recorded as a function of pH and upon addition of inositol hexaphosphate. All protein derivatives yield spectra that are consistent with appreciable molecular heterogeneity in the heme cavity. The pattern of heme methyl hyperfine shifts in carp met-cyano Hb indicates that this heterogeneity arises from the presence of heme rotational disorder, as found in native myoglobin. In carp deoxy Hb, the T----R transition manifests itself in nuclear magnetic resonance spectral changes similar to those found in modified human Hb species; namely, a decrease in heme methyl and an increase in proximal histidyl imidazole ring NH hyperfine shifts indicative of a strengthening of the iron-histidine bond. The met-cyano complex exhibits heme methyl hyperfine shifts similar to the analogous R state complex of Hb A; addition of inositol hexaphosphate did not give evidence for a quaternary structural change. Carp met-azido Hb in the R state also closely resembles the electronic structure of the HbA complex. Addition of inositol hexaphosphate appeared to effect at least a partial conversion to a T state with larger high-spin content than that observed for T state human metHbN3.  相似文献   

8.
The contribution of heterotropic effectors to hemoglobin allostery is still not completely understood. With the recently proposed global allostery model, this question acquires crucial significance, because it relates tertiary conformational changes to effector binding in both the R- and T-states. In this context, an important question is how far the induced conformational changes propagate from the binding site(s) of the allosteric effectors. We present a study in which we monitored the interdimeric interface when the effectors such as Cl-, 2,3-diphosphoglycerate, inositol hexaphosphate, and bezafibrate were bound. We studied oxy-Hb and a hybrid form (alphaFeO2)2-(betaZn)2 as the T-state analogue by monitoring heme absorption and Trp intrinsic fluorescence under hydrostatic pressure. We observed a pressure-dependent change in the intrinsic fluorescence, which we attribute to a pressure-induced tetramer to dimer transition with characteristic pressures in the 70-200-megapascal range. The transition is sensitive to the binding of allosteric effectors. We fitted the data with a simple model for the tetramer-dimer transition and determined the dissociation constants at atmospheric pressure. In the R-state, we observed a stabilizing effect by the allosteric effectors, although in the T-analogue a stronger destabilizing effect was seen. The order of efficiency was the same in both states, but with the opposite trend as inositol hexaphosphate > 2,3-diphosphoglycerate > Cl-. We detected intrinsic fluorescence from bound bezafibrate that introduced uncertainty in the comparison with other effectors. The results support the global allostery model by showing that conformational changes propagate from the effector binding site to the interdimeric interfaces in both quaternary states.  相似文献   

9.
Study of the specific heme orientation in reconstituted hemoglobins   总被引:1,自引:0,他引:1  
K Ishimori  I Morishima 《Biochemistry》1988,27(13):4747-4753
NMR studies of the recombination reaction of apohemoglobin derivatives with natural and unnatural hemes and of the heme-exchange reaction for reconstituted hemoglobin have revealed that the heme is incorporated into the apoprotein with stereospecific heme orientations dependent upon the heme peripheral 2,4-substituents and the axial iron ligand(s). Heme orientations also depend on whether recombination occurs at the alpha or beta subunit and on whether or not the complementary subunit is occupied by the heme. In the recombination reaction with the azido complex of deuterohemin, the alpha subunit of the apohemoglobin preferentially combines with the hemin in the "disordered" heme orientation, whereas protohemin is inserted in either of two heme orientations. Mesohemin inserts predominantly in the "native" heme orientation. For the beta subunit, specific heme orientation was also encountered, but the specificity was somewhat different from that of the alpha subunit. It was also shown that the specific heme orientation in both subunits is substantially affected by the axial heme ligands. These findings imply that apohemoglobin senses the steric bulkiness of both the porphyrin 2,4-substituents and the axial iron ligands in the heme-apoprotein recombination reaction. To gain an insight into the effect of the protein structure, the heme reconstitution reaction of semihemoglobin, demonstrating that the heme orientation in the reconstituted semihemoglobin with the azido-deuterohemin complex was in the native form, was also examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study examines the post-translational role of peripheral propionate groups in the incorporation of the Fe-protoporphryin IX heme into nascent alpha- and beta-globin chains. Human apohemoglobin (a heme-free alpha/beta dimer) in 0.05 M potassium phosphate buffer, pH 7, at 20 degrees C was titrated with either CN-protohemin (native heme with two peripheral propionate groups), or CN-dimethylester hemin (a modified heme with two methyl ester groups in place of the propionate groups). Soret spectrophotometric CN-hemin titrations confirmed that a spectral shift resulted upon binding of protohemin, but no spectral shift occurred upon binding the dimethylester derivative. Recent studies have correlated a Soret spectral shift with the preferential heme binding to the alpha subunit of apohemoglobin. The absence of a Soret wavelength shift (in conjunction with molecular modeling) presented here suggested that the modification of heme propionate groups prevented the formation of an alpha-heme/beta-globin intermediate, a requisite step in the normal assembly of functional hemoglobin.  相似文献   

11.
The effect of pH and inositol hexaphosphate on the electron spin resonance spectra of the alpha-hemes (g = 6.0) and the beta-hemes (g = 6.7) has been measured in methemoglobin M Milwaukee and compared with that of methemoglobin A (g = 6.0). The beta-hemes are found to be comparatively insensitive to both effectors while the alpha-hemes behave in a manner similar to the heme groups of methemoglobin A. Binding of inositol hexaphosphate enhances the high spin ESR signal of the alpha-hemes in both methemoglobins. Comparison of the optical properties of methemoglobins A and M Milwaukee over the pH range from 5.0 to 8.1 shows that inositol hexaphosphate has a differential effect on the subunit types in these two methemoglobins. At low pH the spectral changes observed upon inositol hexaphosphate binding arise primarily from the beta-hemes, while at neutral and alkaline pH these changes arise from both subunit types. The beta-heme spectral changes appear to be pH independent while those arising from the alpha-hemes are strongly pH dependent. It is concluded that it is the hydroxymet form of the alpha-hemes which undergoes spectral change upon inositol hexaphosphate binding to the beta-subunits. In methemoglobin A the spin state and paramagnetic susceptibility increase only in the neutral and alkaline pH ranges upon inositol hexaphosphate binding (Gupta, R.K. and Mildvan, R.S. (1975) J. Biol. Chem. 250, 246; Perutz, M.F., Sanders, J.K.M., Chenery, D.H., Noble, R.W., Penelly, R.R., Fung, L.W.-M., Ho, C., Giannini, I., Porschke, D. and Winkler, H. (1978) Biochemistry 17, 3640). Therefore the hydroxymet form of the alpha-hemes which is responsible for the observed spectral changes must also be responsible for these increases in the magnetic properties of methemoglobin A. Inositol hexaphosphate can bind to methemoglobin at alkaline pH if the beta-hemes are in the high spin form.  相似文献   

12.
The visible and proton NMR spectral responses of imidazole methemoglobin by the binding of inositol hexaphosphate were examined in the 2-40 degrees C range. The magnitude of the +/- (inositol hexaphosphate) visible difference spectrum increased and the intensity of the 33 ppm NMR peak decreased with lowering of the temperature. The NMR results were quantitatively analyzed with a simple two-state allosteric model. The results show that the T conformer fraction is 0.6 at 20 degrees C and that the equilibrium shifts toward the T state at lower temperature. The large changes in delta H and delta S associated with the equilibrium suggest participation of numerous factors in the determination of the equilibrium position. The increase in the T conformer population of imidazole methemoglobin, which is pure low-spin, suggests that the appearance of the T state with decreasing temperature is not directly coupled to an increase in spin of the heme iron.  相似文献   

13.
In the presence of inositol hexaphosphate (IHP), the rate of hemoglobin oxidation by nitrite was much inhibited; however, that of the hemoglobin oxidation by ferricyanide was much accelerated. The difference in the reaction mode was discussed in relation to the interaction of hemoglobin with IHP. The dissociation constant of IHP to oxyhemoglobin was estimated from the rate of the hemoglobin oxidation by ferricyanide in different concentrations of IHP under oxygen saturated conditions.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectra of the glycosylated minor hemoglobins A1a-1, A1a-2, A1b and A1c and the major hemoglobin A0 in the nitrosyl form have been obtained in the absence and presence of inositol hexaphosphate. In the absence of inositol hexaphosphate, nitrosyl hemoglobins A1a-1, A1a-2 and A1b exhibited a triplet hyperfine structure centered at g = 2.009 which has been shown to be diagnostic of the low affinity (T) quaternary structure. Addition of inositol hexaphosphate to nitrosyl hemoglobins A0, A1c, A1b and A1a-2 developed a triplet hyperfine structure of the EPR spectra but the magnitude of the hyperfine was decreased in the order of hemoglobins A0, A1c, A1b and A1a-2. However, inositol hexaphosphate had essentially no effect on the EPR spectrum of nitrosyl hemoglobin A1a-1. The present results account qualitatively for the oxygen binding properties of these glycosylated minor hemoglobins in the framework of a two-state allosteric model.  相似文献   

15.
The geminate recombination of CO with carboxy hemoglobin (Hb4(CO)3) following a ten nanosecond laser pulse and the overall combination of the fourth CO with Hb4(CO)3 has been studied as a function of pH in the presence and absence of inositol hexaphosphate. The results indicate that the kinetics of both reactions are independent of pH and phosphate concentration. The results are discussed in terms of a two-step mechanism: a pre-equilibrium step followed by heme—ligand bond formation. The latter is also known as the geminate recombination reaction (Hb + CO α Hb · CO α HbCO).  相似文献   

16.
Temperature-jump relaxation spectra of methemoglobin have been monitored in the spin-sensitive region of the absorption spectrum at pH 6. A single relaxation process is observed, the amplitude of which correlates exactly with that expected for spin state changes. The time-constant is of the order of 1 to 10 ms at 13 °C. Quaternary structural effects perturb the spin dynamics, as evidenced by a slower relaxation in the αβ dimer as opposed to the tetramer. On the other hand, the spin dynamics of the tetramer are not greatly affected by binding saturating amounts of inositol hexaphosphate. This is partly a reflection of the fact that the relative perturbation, caused by inositol hexaphosphate binding, of the equilibrium between high and low-spin species is small, under the conditions studied. In addition, it means that under these conditions, inositol hexaphosphate does not significantly perturb the flexibility of the irons in the heme groups.  相似文献   

17.
The spectral changes of nitrosyl hemoglobin on addition of inositol hexaphosphate were studied in hybrid-heme hemoglobins. The results showed that the decrease in absorption in the Soret region was mainly due to a spectral change in alpha chains, and that the tension on heme in the quaternary T structure was much stronger in alpha than in beta chains.  相似文献   

18.
Mixtures of nitric oxide and hemoglobin were prepared in a rapid freeze apparatus and analyzed by EPR spectroscopy. Spectra from samples at various degrees of saturation showed that the two subunits bound NO at equal rates. Identical results were observed in 0.1 M phosphate at pH 6.5 and 0.1 M 2,2'-bis(hydroxymethyl)-2,2',2'-nitrilotriethanol, 0.1 M NaCl at pH 7.0, both in the presence and absence of inositol hexaphosphate at either buffer condition. At subsaturating levels of NO (less than 60%), or at all levels of saturation in the presence of inositol hexaphosphate, it was found that the EPR spectrum of nitrosylhemoglobin varied with the length of time before freezing. This change was characterized by the development of a hyperfine structure at g = 2.01 which appeared with a half-time of approximately 0.4 s. Maxwell and Caughey (Maxwell, J. C., and Caughey, W. S. (1976) Biochemistry 15, 388-395) have attributed this three-line EPR hyperfine structure to the formation of a pentacoordinate ferroheme-NO complex. Corresponding slow changes were observed in the visible absorption spectrum following the binding of low levels of NO to deoxyhemoglobin or inositol hexaphosphate to fully saturated nitrosylhemoglobin. Thus it appears that NO binding to the alpha and beta subunits of deoxyhemoglobin takes place at equal rates and, under conditions favoring the T quaternary state (low saturation, presence of inositol hexaphosphate), a further slow structural change takes place, resulting in the cleavage of the iron--proximal histidine bond.  相似文献   

19.
The hemoglobin-oxygen equilibrium binding curve was found to be sensitive to the addition of inositol hexaphosphate at pH 9.1. A solution of hemoglobin A in 0.050 M sodium borate was half-saturated with oxygen at a partial pressure of 0.55mm Hg. Hemoglobin A in 0.050 M sodium borate, 0.001 M inositol hexaphosphate, pH 9.1 was half-saturated with oxygen at a partial pressure of 0.95mm Hg. The Hill plot was linear with a slope of 2.0 in the absence of phosphates. In the presence of inositol hexaphosphate the slope of the Hill plot increased from 1.0 to 2.36. The dependence of fractional saturation of hemoglobin with oxygen on concentration of inositol hexaphosphate was determined at partial pressures of oxygen of 0.46 and 1.07mm Hg.  相似文献   

20.
Ehanced spin-lattice relaxation (1/t1) of water protons induced by the heme iron of human aquomethemoglobin is exchanged-limited (koff = 1.4 times 10-4 per s at 30 degrees, H+ =7.5 Cal per mol) as indicated by the temperature and frequencey dependencies. A comparison of deuteron and proton relaxation rates revealed an order of magnitude primary isotope effect and a small inverse secondary isotope effect on the escape rate of protons from the heme iron into bulk water establishing the exchange of protons and not the exchange of the entire water molecule to be the chemical mechanism of the entire water molecule to be the chemical mechanism of the exchange process. With fluoromethemoglobin, the relaxation rate is in the fast exchange region. The results can be understood in terms of a water molecule interacting with the heme iron at an iron to proton distance less than 3.4 A in aquomethemoglobin and a single proton at a distance of 4.11 A assignable to the NH proton of the distal histidine imidazole group in fluoromethemoglobin. The relaxation rates are pH-dependent and normal titrations with Hill coefficients n = 1 are observed. The pKa is less than or equal to 6. 7 with aquomethemoglobin and 8.5 with fluoromethemoglobin at 30 degrees C. The binding of inositol hexaphosphate in stoichiometric amounts has no significant effect on the magnetic susceptibility of solutions of aquomethemoglobin and fluoromethemoglobin, but in the former case it increases koff to 3.8 times 10-4 per s by lowering the H+ barrier to 6.8 Cal per mol. In fluoromethemoglobin, inositol hexaphosphate decreases the iron to distal histidine NH distance by 0.17 A and the electron relaxation time taus by 10% as determined by the frequency dependence of 1/T1. In the aquomethemoglobin system, inositol hexaphosphate induces a Bohr effect, raising the pKa of the ionization responsible for the 1/T1 titration to 7.2, and induces cooperativity in the pH titration with a Hill coeffocoemt n = 2.8 plus or minus 0.1. With fluoromethemoglobin, the normal pH titration curve is unaffected by inositol hexaphosphate (n approximately equal to 1). Further, relaxivity titrations with varying amounts of azide and fluoride near neutral pH show normal behavior (n = 1) with and without inositol hexaphosphate. These results indicated that inositol hexaphosphate alters the quaternary structure of methemoglobin to the deoxy conformation without causing a change in the spin state of the heme iron...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号