首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Chloroplasts washed with Cl--free, low-salt media (pH 8) containing EDTA, show virtually no DCMU-insensitive silicomolybdate reduction. The activity is readily restored when 10 mM Cl- is added to the reaction mixture. Very similar results were obtained with the other Photosystem II electron acceptor 2,5-dimethylquinone (with dibromothymoquinone), with the Photosystem I electron acceptor FMN, and also with ferricyanide which accepts electrons from both photosystems. 2. Strong Cl--dependence of Hill activity was observed invariably at all pH values tested (5.5--8.3) and in chloroplasts from three different plants: spinach, tobacco and corn (mesophyll). 3. In the absence of added Cl- the functionally Cl--depleted chloroplasts are able to oxidize, through Photosystem II, artificial reductants such as catechol, diphenylcarbazide, ascorbate and H2O2 at rates which are 4--12 times faster than the rate of the residual Hill reaction. 4. The Cl--concentration dependence of Hill activity with dimethylquinone as an electron acceptor is kinetically consistent with the typical enzyme activation mechanism: E(inactive) + Cl- in equilibrium E . Cl- (active), and the apparent activation constant (0.9 mM at pH 7.2) is unchanged by chloroplast fragmentation. 5. The initial phase of the development of inhibition of water oxidation in Cl--depleted chloroplasts during the dark incubation with NH2OH (1/2 H2SO4) is 5 times slower when the incubation medium contains Cl- than when the medium contains NH2OH alone or NH2OH plus acetate ion. (Acetate is shown to be ineffective in stimulating O2 evolution).  相似文献   

2.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

3.
In isolated chloroplasts (Spinacia olearacea), where electron transport to Photosystem I is blocked by the plastoquinone antagonist, dibromothymoquinone, lipophilic catechols in concentrations of 50--150 microM stimulate ferricyanide reduction in Photosystem II and associated O2 evolution. Non-permeating catechols, such as Tiron, are unable to stimulate this reaction. Those quinones, such as 2,5-dimethylbenzoquinone, which act as class III electron acceptors, do not lead to stimulation of ferricyanide reduction in Photosystem II or stimulation fo associatied O2 evolution, when electron transport to Photosystem I is blocked by dibromoquinone. Stimulation of ferricyanide reduction is not observed in Tris-treated chloroplasts, implying that electron donation to Photosystem II by catechols is not responsible for the stimulation. Various mechanisms for this stimulation in class II chloroplasts are discussed.  相似文献   

4.
Photosystem II-dependent cyclic photophosphorylation activity produced by addition of p-phenylenediamines to KCN-Hg-NH2OH-inhibited chloroplasts is the product of two separate reactions when a proton/electron donor is the catalyst. The activity observed with an electron donor as catalyst consists of a single reaction. One of the cyclic reactions, evoked by low (≤40 micromolar) concentrations of a proton/electron donor is sensitive to dibromothymoquinone and to perturbation of membrane organization by sonication. The second reaction, requiring higher catalyst concentrations, is less sensitive to either dibromothymoquinone or membrane perturbation. These results indicate that at low concentrations, proton/electron or electron donor catalysts act to produce a photosystem II cyclic reaction which is dependent on membrane-bound electron carriers. High concentrations of proton/electron donors, on the other hand, can produce a phosphorylation reaction in which the catalyst itself is largely responsible for cyclic activity.  相似文献   

5.
A comparative study is made, at 15 degrees C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment. At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 mus. When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t 1/2 about 180 mus) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t 1/2 about 120 mus). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible. In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 mus.  相似文献   

6.
J.Michael Gould  S. Izawa 《BBA》1974,333(3):509-524
1. By using dibromothymoquinone as the electron acceptor, it is possible to isolate functionally that segment of the chloroplast electron transport chain which includes only Photosystem II and only one of the two energy conservation sites coupled to the complete chain (Coupling Site II, observed P/e2 = 0.3–0.4). A light-dependent, reversible proton translocation reaction is associated with the electron transport pathway: H2O → Photosystem II → dibromothymoquinone. We have studied the characteristics of this proton uptake reaction and its relationship to the electron transport and ATP formation associated with Coupling Site II.

2. The initial phase of H+ uptake, analyzed by a flash-yield technique, exhibits linear kinetics (0–3 s) with no sign of transient phenomena such as the very rapid initial uptake (“pH gush”) encountered in the overall Hill reaction with methylviologen. Thus the initial rate of H+ uptake obtained by the flash-yield method is in good agreement with the initial rate estimated from a pH change tracing obtained under continuous illumination.

3. Dibromothymoquinone reduction, observed as O2 evolution by a similar flash-yield technique, is also linear for at least the first 5 s, the rate of O2 evolution agreeing well with the steady-state rate observed under continuous illumination.

4. Such measurements of the initial rates of O2 evolution and H+ uptake yield an H+/e ratio close to 0.5 for the Photosystem II partial reaction regardless of pH from 6 to 8. (Parallel experiments for the methylviologen Hill reaction yield an H+/e ratio of 1.7 at pH 7.6.)

5. When dibromothymoquinone is being reduced, concurrent phosphorylation (or arsenylation) markedly lowers the extent of H+ uptake (by 40–60%). These data, unlike earlier data obtained using the overall Hill reaction, lend themselves to an unequivocal interpretation since phosphorylation does not alter the rate of electron transport in the Photosystem II partial reaction. ADP, Pi and hexokinase, when added individually, have no effect on proton uptake in this system.

6. The involvement of a proton uptake reaction with an H+/e ratio of 0.5 in the Photosystem II partial reaction H2O → Photosystem II → dibromothymoquinone strongly suggests that at least 50% of the protons produced by the oxidation of water are released to the inside of the thylakoid, thereby leading to an internal acidification. It is pointed out that the observed efficiencies for ATP formation (P/e2) and proton uptake (H+/e) associated with Coupling Site II can be most easily explained by the chemiosmotic hypothesis of energy coupling.  相似文献   


7.
Ferricyanide Reduction in Photosystem II of Spinach Chloroplasts   总被引:1,自引:1,他引:0       下载免费PDF全文
Barr R  Crane FL 《Plant physiology》1981,67(6):1190-1194
Ferricyanide can be reduced in Photosystem II of spinach chloroplasts at 2 separate sites, both of which are sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but only one of which is sensitive to dibromothymoquinone. Data presented in this paper emphasize ferricyanide site II of Photosystem II, which is sensitive to thiol inhibition and may reflect a cyclic pathway around Photosystem II. Ferricyanide reduction sites 1 and 2 also differ from each other in fractions isolated from discontinuous sucrose gradients, from fragmented chloroplasts, and upon trypsin treatment. Sucrose density gradient centrifugation shows that ferricyanide reduction site 1 activity at pH 6 decreases from 30 to 50% in various isolated fractions, while the dibromothymoquinone-insensitive activity at pH 8 (site 2) is stimulated from 15 to 35%.  相似文献   

8.
Patrick M. Kelley  S. Izawa 《BBA》1978,502(2):198-210
1. Chloroplasts washed with Cl?-free, low-salt media (pH 8) containing EDTA, show virtually no DCMU-insensitive silicomolybdate reduction. The activity is readily restored when 10 mM Cl? is added to the reaction mixture. Very similar results were obtained with the other Photosystem II electron acceptor 2,5-dimethylquinone (with dibromothymoquinone), with the Photosystem I electron acceptor FMN, and also with ferricyanide which accepts electrons from both photosystems.2. Strong Cl?-dependence of Hill activity was observed invariably at all pH values tested (5.5–8.3) and in chloroplasts from three different plants: spinach, tobacco and corn (mesophyll).3. In the absence of added Cl? the functionally Cl?-depleted chloroplasts are able to oxidize, through Photosystem II, artificial reductants such as catechol, diphenylcarbazide, ascorbate and H2O2 at rates which are 4–12 times faster than the rate of the residual Hill reaction.4. The Cl?-concentration dependence of Hill activity with dimethylquinone as an electron acceptor is kinetically consistent with the typical enzyme activation mechanism: E(inactive) + Cl?ag E · Cl? (active), and the apparent activation constant (0.9 mM at pH 7.2) is unchanged by chloroplast fragmentation.5. The initial phase of the development of inhibition of water oxidation in Cl?-depleted chloroplasts during the dark incubation with NH2OH (12 H2SO4) is 5 times slower when the incubation medium contains Cl? than when the medium contains NH2OH alone or NH2OH plus acetate ion. (Acetate is shown to be ineffective in stimulating O2 evolution.)6. We conclude that the Cl?-requiring step is one which is specifically associated with the water-splitting reaction, and suggests that Cl? probably acts as a cofactor (ligand) of the NH2OH-sensitive, Mn-containing O2-evolving enzyme.  相似文献   

9.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

10.
Three sites of silicomolybdate reduction in the electron transport chain of isolated tobacco chloroplasts are described. The relative participation of these sites is greatly influenced by the particular reaction conditions. One site (the only site when the reaction medium contains high concentrations of bovine serum albumin (greater than 5 mg/ml) is associated with Photosystem I, since it supports phosphorylation with a P/e2 value close to 1 and the reaction is totally sensitive to both plastocyanin inhibitors and 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Two other sites of silicomolybdate reduction are associated with Photosystem II. One site is 3-(3,4-dichlorophenyl)-1,1-dimethylurea insensitive and supports phosphorylation when the reaction mixture contains dimethyl sulfoxide and glycerol (protective agents). The P/e2 value routinely observed is about 0.2. Bovine serum albumin (1-2 mg/ml) can also act as a protective agent, but the efficiency of Photosystem II phosphorylation observed is lower. Silicomolybdate reduction supports virtually no phosphorylation, regardless of the reduction pathway, when the reaction mixture contains no protective agents. This is due to irreversible uncoupling by silicomolybdate itself. The silicomolybdate uncoupling is potentiated by high salt concentrations even if the presence of protective agents. Exposure of chloroplasts to silicomolybdate in the absence of protective agents rapidly inactivates both photosystems.  相似文献   

11.
Absorption changes (deltaA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures. In the microsecond time range the difference spectrum of deltaA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+-700; it decays in a polyphasic manner with half-times of 17 microseconds, 210 microseconds and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 microseconds. After treatment with 3--10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t1/2=20--40 microseconds, and a minor phase with t1/2 congruent to 200 microseconds), probably by reduction by an accessory electron donor. In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25--45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

12.
Silicomolybdate functions as an electron acceptor in a Photosystem II water oxidation (measured as O2 evolution) partial reaction that is 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) insensitive, that is, reduction os silicomolybdate occurs at or before the level of Q, the primary electron acceptor for Photosystem II. This report characterizes the partial reaction with the principal findings being as follows: 1. Electron transport to silicomolybdate significantly decreased room temperature Photosystem I side of the DCMU had no effect on the fluorescence level, consistent with silicomolybdate accepting electrons at or before Q. In the absence of DCMU, silicomolybdate is also reduced at a site on the Photosystem I side of the DCMU block, prior to or at plastoquinone, since the plastoquinone antagonist dibromothymoquinone (DBMIB) did not affect the electron transport rate. 3. Electron transport from water to silicomolybdate (+ DCMU) is not coupled to ATP formation, nor is there a measurable accumulation of protons within the membrane (measured by amine uptake). Silicomolybdate is not inhibitory to phosphorylation per se since neither cyclic nor post-illumination (XE) phosphorylation were inhibited. 4. Uncouplers stimulated electron transport from water to silicomolybdate in the pH range of 6 to 7, but inhibited at pH values near 8. These data are consistent with the view that when electron flow is through the abbreviated sequence of water to Photosystem II to silicomolybdate (+ DCMU), conditions are not established for the water protons to be deposited within the membrane. Experiments reported elsewhere (Fiaquinta, R.T., Dilley, R.A. and Horton, P.(19741 J. Bioenerg. 6, 167-177) and these data, are consistent with the hypothesis that electron transport between Q and plastoquinone energizes a membrane conformational change that is required to interact with the water oxication system so as to result in the deposition of water protons either within the membrane itself or within the inner oxmotic space.  相似文献   

13.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

14.
1. Photosynthetic electron transport from water to lipophilic Photosystem II acceptors was stimulated 3--5-fold by high concentrations (greater than or equal to 1 M) of salts containing anions such as citrate, succinate and phosphate that are high in the Hofmeister series. 2. In trypsin-treated chloroplasts, K3Fe(CN)6 reduction insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea was strongly stimulated by high concentrations of potassium citrate, but there was much less stimulation of 2,6-dichloroindophenol reduction in Tris-treated chloroplasts supplied with 1,5-diphenylcarbazide as artificial donor. The results suggest that the main site of action of citrate was the O2-evolving complex of Photosystem II. 3. Photosystem I partial reactions were also stimulated by intermediate concentrations of citrate (up to 2-fold stimulation by 0.6--0.8 M-citrate), but were inhibited at the highest concentrations. The observed stimulation may have been caused by stabilizaton of plastocyanin that was complexed with the Photosystem I reaction centre, 4. At 1 M, potassium citrate protected O2 evolution against denaturation by heat or by the chaotropic agent NaNO3. 5. It is suggested that anions high in the Hofmeister series stimulated and stabilized electron transport by enhancing water structure around the protein complexes in the thylakoid membrane.  相似文献   

15.
In Tris-washed chloroplasts, completely lacking the oxygen-evolving capacity, absorption changes in the range of 420--560 nm induced by repetitive flash excitation have been measured in the presence and absence of electron donors. It was found: (1) At 520 nm flash-induced absorption changes are observed, which predominantly decay via a 100--200-mus exponential kinetics corresponding to that of the back reaction between the primary electron donor and acceptor of Photosystem II (Haveman, J. and Mathis, P. (1976) Biochim. Biophys. Acta 440, 346--355; Renger, G. and Wolff, Ch. (1976) Biochim. Biophys. Acta 423, 610--614). In the presence of hydroquinone/ascorbate as donor couple the amplitude is nearly doubled and the decay becomes significantly slowed down. (2) The difference spectrum of the absorption changes obtained in the presence of hydroquinone/ascorbate, which are sensitive to ionophores, is nearly identical with that of normal chloroplasts in the range of 460--560 nm (Emrich, H.M., Junge, W. and Witt, H.T. (1969) Z. Naturforsch. 24b, 114--1146). In the absence of hydroquinone/ascorbate the difference spectrum of the absorption changes, characterized by a 100--200-mus decay kinetics, differs in the range of 460--500 nm and by a hump in the range of 530--560 nm. The hump is shown to be attributable to the socalled C550 absorption change, which reflects the turnover of the primary acceptor of Photosystem II (van Gorkom, H.J.(1976) Thesis, Leiden), while the deviations in the range of 460--500 nm are understandable as to be due to the overlapping absorption changes of chlorphyll alpha II+. The problems arising with the latter explanation are discussed. (3) The electron transfer due to the rapid turnover at Photosystem II, which can be induced by flash groups with a short dark time between the flashes, is not able to energize the ATPase and to drive photophosphorylation. On the basis of the present results it is inferred, that in Tris-washed chloroplasts under repetitive flash excitation a rapid transmembrane vectorial electron shuttle takes place between the primary acceptor (X320) and donor (Chl alpha II) of Photosystem II, which is not able to energize the photophosphorylation. Furthermore, the data are shown to confirm the localization of X320 and Chl alpha II within the thylakoid membrane at the outer and inner side, respectively.  相似文献   

16.
Ort DR  Izawa S 《Plant physiology》1973,52(6):595-600
Artificial electron donors to photosystem II provide an important means for characterizing the newly discovered site of energy coupling near photosystem II. However, water oxidation must be completely abolished, without harming the phosphorylation mechanism, for these donor reactions and the associated phosphorylation to withstand rigorous quantitative analysis. In this paper we have demonstrated that treatment of chloroplasts with hydroxylamine plus EDTA at pH 7.5 in the presence of Mg2+ followed by washing to remove the amine is a highly reliable technique for this purpose. The decline of the Hill reaction and the coupled phosphorylation during the treatment were carefully followed. No change in the efficiency of phosphorylation (P/e2 1.0-1.1) was observed until the reactions became immeasurable. Photosystem I-dependent reactions, such as the transfer of electrons from diaminodurene or reduced 2,6-dichlorophenolindophenol to methylviologen, and the associated phosphorylation were totally unaffected. It is clear that the hydroxylamine treatment is highly specific, with no adverse effect on the mechanism of phosphorylation itself. Benzidine photooxidation via both photosystems II and I in hydroxylamine-treated chloroplasts (electron acceptor, methylviologen; assayed as O2 uptake) supports phosphorylation with the same efficiency as that observed for the normal Hill reaction (P/e2 = 1.1). An apparent P/e2 ratio of 0.6 was computed for the photooxidation of ascorbate.  相似文献   

17.
Steven P. Berg  S. Izawa 《BBA》1977,460(2):206-219
Three sites of silicomolybdate reduction in the electron transport chain of isolated tobacco chloroplasts are described. The relative participation of these sites is greatly influenced by the particular reaction conditions. One site (the only site when the reaction medium contains high concentrations of bovine serum albumin (> 5 mg/ml)) is associated with Photosystem I, since it supports phosphorylation with a P/e2 value close to 1 and the reaction is totally sensitive to both plastocyanin inhibitors and 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Two other sites of silicomolybdate reduction are associated with Photosystem II. One site is 3-(3,4-dichlorophenyl)-1,1-dimethylurea insensitive and supports phosphorylation when the reaction mixture contains dimethyl sulfoxide and glycerol (protective agents). The P/e2 value routinely observed is about 0.2. Bovine serum albumin (1–2 mg/ml) can also act as a protective agent, but the efficiency of Photosystem II phosphorylation observed is lower. Silicomolybdate reduction supports virtually no phosphorylation, regardless of the reduction pathway, when the reaction mixture contains no protective agents. This is due to irreversible uncoupling by silicomolybdate itself. The silicomolybdate uncoupling is potentiated by high salt concentrations even in the presence of protective agents. Exposure of chloroplasts to silicomolybdate in the absence of protective agents rapidly inactivates both photosystems.  相似文献   

18.
The green alga Scenedesmus obliquus is capable of both uptake and production of H(2) after anaerobic adaptation (photoreduction of CO(2) or photohydrogen production). The essential enzyme for H(2)-metabolism is a NiFe-hydrogenase with a [2Fe-2S]-ferredoxin as its natural redox partner. Western blot analysis showed that the hydrogenase is constitutively expressed. The K(m) values were 79.5 microM and 12.5 microM, determined with ferredoxin and H(2), respectively, as electron donor for the hydrogenase. In vitro, NADP(+) was reduced by H(2) in the presence of the hydrogenase, the ferredoxin and a ferredoxin-NADP reductase. From these results and considerations on the stoichiometry we propose that this light-independent electron transfer is part of the photoreduction of CO(2) in vivo. For ATP synthesis, necessary for the photoreduction of CO(2), light-dependent cyclic electron transfer around Photosystem (PS) I accompanies this 'dark reaction'. PS II fluorescence data suggest that (a) in S. obliquus H(2)-reduction might function as the anaerobic counterpart of the O(2)-dependent Mehler reaction, and (b) the presence of either a ferredoxin quinone-reductase or NAD(P)-dehydrogenase (complex I) in S. obliquus chloroplasts.  相似文献   

19.
A detailed study of the photo-induced decline in chlorophyll a fluorescence intensity (Kautsky phenomenon) in coupled isolated chloroplasts from a high level (P) to a low stationary level (S) is presented. 1. A linear relationship between P leads to S quenching and intrathylakoid H+ concentration was found. When the light-induced proton gradient was abolished by uncoupling, the fluorescence emission at room temperature was lowered proportionally to increased H+ concentration in the medium. 2. Fluorescence spectra at -196 degrees C of samples frozen at the P and S states showed no significant differences in the Photosystem I/Photosystem II ratio of fluorescence emission. Furthermore, freezing to -196 degrees C reversed the P leads to S quenching. This indicates that the P leads to S quenching is not related to an increase of spillover of excitation energy from Photosystem II to Photosystem I. 3. When Mg2+ was added to thylakoids suspended in a medium free of divalent cations, the inhibition of spillover required lower Mg2+ concentrations (half saturation at 0.6 mM). Increased proton concentration in the medium also inhibited spillover. 4. The results are interpreted in terms of two sites of Mg2+ and H+ effects on excitation deactivation in Photosystem II. One site is located on the outer face of the thylakoid membrane; action of both Mg2+ and H+ at this side diminishes spillover. The second site is located on the inner face of the membrane; as Mg2+ is displaced there by protons, a non-photochemical quenching of Photosystem II fluorescence is induced, which is manifested by the P leads to S decline.  相似文献   

20.
In chloroplasts, tetramethyl-p-hydroquinone supports high rates of phosphorylation-coupled, noncyclic electron flow through Photosystem I to methylviologen. The reaction is totally sensitive to dibromothymoquinone, indicating an electron donation to the plastoquinone region of the photosynthetic chain. The uncoupled electron flow rate exceeds 1000 μequivalents per hour per mg chlorophyll. The phosphorylation efficiency (Pe2) at the optimal pH of 8 is 0.6–0.65. Presumably this ratio represents the efficiency of energy coupling in the electron transfer step plastoquinone → cytochrome f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号