首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonate metabolite of the cytochrome P450 omega hydroxylase, was detected in rat urine by gas chromatography-mass spectrometric techniques. The concentration of 20-HETE in urine from 7-week-old hypertensive and normotensive rats was 2.1 and 1.3 nM, respectively. This is the first demonstration of 20-HETE urinary excretion and thus calls attention to the possibility that 20-HETE participates in the regulation of renal function via its effect on vascular tone and ion transport processes.  相似文献   

2.
Liu X  Wu J  Liu H  Lai G  Zhao Y 《Gene》2012,505(2):352-359
We have previously established a cytochrome P450 4F2 (CYP4F2) transgenic mouse model. The present study elucidated the molecular foundation of hypertension by androgen-induction in this model. The renal expression of CYP4F2 in transgenic mice was highly expressed and strongly induced with 5α-dihydrotestosterone (DHT) treatment determined by Western blot. DHT also increased the renal arachidonic acid ω-hydroxylation and urinary 20-hydroxyeicosatetraenoic acid (20-HETE) excretion (P<0.01), and furthermore elevated the systolic blood pressure by 10 and 22 mm Hg (P<0.05) in female and castrated male transgenic mice, respectively. HET0016 completely eliminated the androgen-induced effects (P<0.01). Endogenous Cyp4a ω-hydroxylases, evaluated by real-time quantitative PCR, were significantly suppressed in transgenic mice (P<0.05). Importantly, transgenic mice with increased 20-HETE showed decreased epoxyeicosatrienoic acids (EETs) and increased dihydroxyeicosatetraenoic acids determined by liquid chromatography-tandem mass spectrometry, contributing to significantly raised ratio of 20-HETE/EETs in the urine and kidney homogenate (P<0.01). These data demonstrate that the androgen aggravated hypertension possibly through an altered ratio of 20-HETE/EETs in CYP4F2 transgenic mice.  相似文献   

3.
This study examined the effects of chronic blockade of the renal formation of epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid with 1-aminobenzotriazole (ABT; 50 mg.kg(-1). day(-1) ip for 5 days) on pressure natriuresis and the inhibitory effects of elevations in renal perfusion pressure (RPP) on Na(+)-K(+)-ATPase activity and the distribution of the sodium/hydrogen exchanger (NHE)-3 in the proximal tubule of rats. In control rats (n = 15), sodium excretion rose from 2.3 +/- 0.4 to 19.4 +/- 1.8 microeq.min(-1).g kidney weight(-1) when RPP was increased from 114 +/- 1 to 156 +/- 2 mmHg. Fractional excretion of lithium rose from 28 +/- 3 to 43 +/- 3% of the filtered load. Chronic treatment of the rats with ABT for 5 days (n = 8) blunted the natriuretic response to elevations in RPP by 75% and attenuated the increase in fractional excretion of lithium by 45%. In vehicle-treated rats, renal Na(+)-K(+)-ATPase activity fell from 31 +/- 5 to 19 +/- 2 micromol P(i).mg protein(-1).h(-1) and NHE-3 protein was internalized from the brush border of the proximal tubule after an elevation in RPP. In contrast, Na(+)-K(+)-ATPase activity and the distribution of NHE-3 protein remained unaltered in rats treated with ABT. These results suggest that cytochrome P-450 metabolites of arachidonic acid contribute to pressure natriuresis by inhibiting Na(+)-K(+)-ATPase activity and promoting internalization of NHE-3 protein from the brush border of the proximal tubule.  相似文献   

4.
The present study examined the effects of ANG II on the renal synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) and its contribution to the renal vasoconstrictor and the acute and chronic pressor effects of ANG II in rats. ANG II (10(-11) to 10(-7) mol/l) reduced the diameter of renal interlobular arteries treated with inhibitors of nitric oxide synthase and cyclooxygenase, lipoxygenase, and epoxygenase by 81 +/- 8%. Subsequent blockade of the synthesis of 20-HETE with 17-octadecynoic acid (1 micromol/l) increased the ED(50) for ANG II-induced constriction by a factor of 15 and diminished the maximal response by 61%. Graded intravenous infusion of ANG II (5-200 ng/min) dose dependently increased mean arterial pressure (MAP) in thiobutylbarbitol-anesthetized rats by 35 mmHg. Acute blockade of the formation of 20-HETE with dibromododecenyl methylsulfimide (DDMS; 10 mg/kg) attenuated the pressor response to ANG II by 40%. An intravenous infusion of ANG II (50 ng. kg(-1). min(-1)) in rats for 5 days increased the formation of 20-HETE and epoxyeicosatrienoic acids (EETs) in renal cortical microsomes by 60 and 400%, respectively, and increased MAP by 78 mmHg. Chronic blockade of the synthesis of 20-HETE with intravenous infusion of DDMS (1 mg. kg(-1). h(-1)) or EETs and 20-HETE with 1-aminobenzotriazole (ABT; 2.2 mg. kg(-1). h(-1)) attenuated the ANG II-induced rise in MAP by 40%. Control urinary excretion of 20-HETE averaged 350 +/- 23 ng/day and increased to 1,020 +/- 105 ng/day in rats infused with ANG II (50 ng. kg(-1). min(-1)) for 5 days. In contrast, urinary excretion of 20-HETE only rose to 400 +/- 40 and 600 +/- 25 ng/day in rats chronically treated with ANG II and ABT or DDMS respectively. These results suggest that acute and chronic elevations in circulating ANG II levels increase the formation of 20-HETE in the kidney and peripheral vasculature and that 20-HETE contributes to the acute and chronic pressor effects of ANG II.  相似文献   

5.
Alterations in renal function contribute to Goldblatt two-kidney, one-clip (2K1C) hypertension. A previous study indicated that bioavailability of cytochrome P-450 metabolites epoxyeicosatrienoic acids (EETs) is decreased while that of 20-hydroxyeicosatetraenoic acids (20-HETE) is increased in this model. We utilized the inhibitor of soluble epoxide hydrolase cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) and HET-0016, the inhibitor of 20-HETE production, to study the role of EETs and 20-HETE in the regulation of renal function. Chronic c-AUCB treatment significantly decreased systolic blood pressure (SBP) (133 ± 1 vs. 163 ± 3 mmHg) and increased sodium excretion (1.23 ± 0.10 vs. 0.59 ± 0.03 mmol/day) in 2K1C rats. HET-0016 did not affect SBP and sodium excretion. In acute experiments, renal blood flow (RBF) was decreased in 2K1C rats (5.0 ± 0.2 vs. 6.9 ± 0.2 ml·min(-1)·g(-1)). c-AUCB normalized RBF in 2K1C rats (6.5 ± 0.6 ml·min(-1)·g(-1)). HET-0016 also increased RBF in 2K1C rats (5.8 ± 0.2 ml·min(-1)·g(-1)). Although RBF and glomerular filtration rate (GFR) remained stable in normotensive rats during renal arterial pressure (RAP) reductions, both were significantly reduced at 100 mmHg RAP in 2K1C rats. c-AUCB did not improve autoregulation but increased RBF at all RAPs and shifted the pressure-natriuresis curve to the left. HET-0016-treated 2K1C rats exhibited impaired autoregulation of RBF and GFR. Our data indicate that c-AUCB displays antihypertensive properties in 2K1C hypertension that are mediated by an improvement of RBF and pressure natriuresis. While HET-0016 enhanced RBF, its anti-natriuretic effect likely prevented it from producing a blood pressure-lowering effect in the 2K1C model.  相似文献   

6.
Analysis of 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictor produced by the cytochrome P450 pathway, presently requires high-performance liquid chromatography (HPLC) and gas chromatography/ mass spectrometry (GC/MS). To simplify 20-HETE analysis, competitive ELISAs were developed using polyclonal anti-20-HETE coated ELISA plates to which free 20-HETE and 20-HETE conjugated to horseradish peroxidase (HRP) or alkaline phosphatase (AP) were added. Assays were developed with and without a pro prietary enhancer solution which allows for the extraction-free measurement of 20-HETE in urine samples. The bound 20-HETE-HRP or 20-HETE-AP was detected using 3,3 ,5,5, -tetramethylbenzidine and p-nitrophenyl phosphate, respectively. Sensitivities expressed as 80% B/B0, were 0.1 ng/ml for the HRP assay, and 0 5 ng/ml for the AP assay, with r2 = 0 99 for both formats. Of the 17 lipids tested for cross-reactivity, arachidonic acid showed the highest (0.32%) followed by racemic 5-HETE (0.07%) and 8,9-dihydroxyeicosatrienoic acid (DHET) (0.04%). Preliminary validation experiments examining serum and urine concentrations of 20-HETE yield values that fall within the ranges established by GC/MS in the literature. These ELISAs provide simple and inexpensive methods for the analysis of 20-HETE in biological samples.  相似文献   

7.
The vasodilatory effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on lung arteries is opposite to the constrictor effect seen in cerebral and renal vessels. These observations raise questions about the cellular localization of 20-HETE-forming isoforms in pulmonary arteries and other tissues. Using in situ hybridization, we demonstrate for the first time CYP4A (a family of cytochrome P-450 enzymes catalyzing formation of 20-HETE from the substrate arachidonic acid) mRNA in pulmonary arterial endothelial and smooth muscle cells, bronchial smooth muscle and bronchial epithelial cells, type I epithelial cells, and macrophages in adult male rat lungs. Moreover, we detect CYP4A protein in rat pulmonary arteries and bronchi as well as cultured endothelial cells. Finally, we identify endogenously formed 20-HETE by using fluorescent HPLC techniques, as well as the capacity to convert arachidonic acid into 20-HETE in pulmonary arteries, bronchi, and endothelium. These data show that 20-HETE is an endogenous product of several pulmonary cell types and is localized to tissues that optimally position it to modulate physiological functions such as smooth muscle tone or electrolyte flux.  相似文献   

8.
The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO.  相似文献   

9.
Psoriasis is a common chronic inflammatory and proliferative skin disease characterised by epidermal neutrophil infiltration which may be induced by chemotactic substances in the involved epidermis. Superficial psoriatic scale was shown to contain biologically active amounts of leukotriene B4 and monohydroxy-eicosatetraenoic acid (HETE)- like material as determined by assay for chemokinetic activity in high performance liquid chromatography (HPLC) fractions of scale extracts. Extracts of scale and chamber fluid from abraded lesional and uninvolved psoriatic skin were purified by HPLC and appropriate fractions were analysed by gas chromatography - mass spectrometry (GC-MS). The following monohydroxy metabolites of arachidonic, linoleic and 11,14-eicosadienoic acids were identified : 15-HETE, 12-HETE, 11-HETE, 9-HETE, 8-HETE, 5-HETE, 13-hydroxy-octadecadienoic acid (13-HODD), 9-HODD and 15-hydroxy-eicosadienoic acid (15-HEDE). The results suggested that 12-HETE, 13-HODD and 9-HODD are the most abundant monohydroxy fatty acids in the psoriatic skin extracts described above. Assays of 13-HODD, 9-HODD and 15-HEDE for chemokinetic activity were negative with concentrations up to 10?4M. The biological significance of these three compounds in not known, but some of the hydroxylated metabolites of arachidonic acid may, by virtue of their chemotactic properties, be relevant to the pathogenesis of the psoriatic neutrophil infiltrate.  相似文献   

10.
[1-14C]Arachidonic acid was incubated with isolated bovine adrenal fasciculata cells for 15 min at 37gC. The metabolites were separated and purified by reverse- and straight-phase high performance liquid chromatography, and identified by gas chromatography-mass spectrometry or radioimmunoassay. Identified metabolites were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), leukotriene B4 and 11,14,15-trihydroxy-5,8,12-eicosatrienoic acid (11,14,15-THET). Addition of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), an intermediate metabolite of 15-lipoxygenase pathway to microsomes of bovine adrenal fasciculata cells resulted in the formation of 11,14,15-THET. The formation of 11,14,15-THET by microsomes was not dependent on the presence of NADPH, while it was dose-dependently suppressed by ketoconazole, a potent inhibitor of cytochrome P-450 dependent enzymes. These results indicate that 5- and 15-lipoxygenase pathways of arachidonic acid may exist in bovine adrenal fasciculata cells and that 15-HPETE is further metabolized to 11,14,15-THET by adrenal microsomal cytochrome P-450.  相似文献   

11.
Postmenopausal hypertension: role of 20-HETE   总被引:1,自引:0,他引:1  
Blood pressure (BP) increases after menopause. However, the mechanisms responsible have not been elucidated. In this study we tested the hypothesis that 20-hydroxyeicosatetraenoic acids (20-HETE), produced by cytochrome P-450 (CYP450) ω-hydroxylase, contributes to the hypertension in a model of postmenopausal hypertension, aged female spontaneously hypertensive rats (PMR). 1-Aminobenzotriazole, a nonselective inhibitor of arachidonic acid metabolism, for 7 days, reduced BP in PMR but had no effect in young females. Acute intravenous infusion of HET-0016, a specific inhibitor of 20-HETE, over 3 h, also reduced BP in PMR. CYP4A isoform mRNA expression showed no difference in renal CYP4A1 or CYP4A3 but increases in CYP4A2 and decreases in CYP4A8. CYP4A protein expression was decreased in kidney of PMR compared with young females. Endogenous 20-HETE was significantly higher in cerebral vessels of PMR than young females (YF) but was significantly lower in renal vessels of PMR. Omega-hydroxylase activity in cerebral vessels was also higher in PMR but was similar in kidney vessels in both groups. In renal microsomal preparations, endogenous 20-HETE was not different in PMR and young females, but ω-hydroxylase activity was significantly lower in PMR than YF. The data with blockers suggest that 20-HETE contributes to postmenopausal hypertension in SHR. The data also suggest that cerebral production of 20-HETE may be increased and renal tubular production may be decreased in PMR, thus both contributing to their elevated BP.  相似文献   

12.
The present study determined the role of 20-hydroxyeicosatetraenoic acid [20-HETE; produced by omega-hydroxylation of arachidonic acid via cytochrome P-450 (CP450) 4A enzymes] in regulating myogenic activation of skeletal muscle resistance arteries from normotensive (NT) and hypertensive (HT) Dahl salt-sensitive (SS) rats. Gracilis arteries (GA) were isolated from each rat and viewed via television microscopy, and changes in vessel diameter with altered transmural pressure were measured with a video micrometer. Under control conditions, GA from both groups exhibited strong, endothelium-independent myogenic activation. Treatment of GA with 17-octadecynoic acid (17-ODYA; inhibitor of CP450 4A enzymes) did not alter myogenic activation in NT rats, but impaired this response in HT animals. Treatment of GA from HT rats with dibromo-dodecynyl-methylsulfimide (DDMS; inhibitor of 20-HETE production) impaired myogenic activation, as did application of 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, an antagonist for 20-HETE receptors. Application of iberiotoxin, a Ca(2+)-activated potassium (K(Ca)) channel inhibitor, restored myogenic activation from HT rats treated with DDMS. These results suggest that myogenic activation of skeletal muscle resistance arteries from NT Dahl-SS rats does not depend on CP450, whereas myogenic activation of these vessels in HT Dahl-SS rats is partly a function of 20-HETE production, inhibiting K(Ca) channels through a receptor-mediated process.  相似文献   

13.
Endothelin-1 (ET-1) produces potent renal effects that we have previously shown to be dependent on cytochrome P-450 (CYP450) metabolites of aracidonic acid (24) This study evaluated the role of these metabolites in the effects produced by ET-1 on renal blood flow (RBF), cortical blood flow (CBF), medullary blood flow (MBF), and mean arterial blood pressure (MBP). ET-1 (20-200 pmol/kg) increased MBP, renal vascular resistance (RVR), and MBF but reduced CBF and RBF in a dose-dependent manner. The decreases in CBF and RBF, and increases in MBP and RVR were blunted by BMS-182874, an ET(A) receptor antagonist or BQ-788, an ET(B) receptor antagonist. Similarly, indomethacin, an inhibitor of cyclooxygenase activity, or 12,12-dibromododecenoic acid (DBDD), a CYP450-dependent inhibitor of production of 20-hydroxyeicosatetraenoic acid (20-HETE), blunted these effects. ET-3 elicited dose-related reduction in CBF and increase in MBF. Indomethacin accentuated the reduction in CBF and attenuated the increase in MBF, as did DBDD. ET-1-induced increase in MBF was attenuated by BQ-788, N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, indomethacin, or DBDD. DBDD inhibited the hemodynamic effects of L-NAME. Miconazole, the inhibitor of CYP450-dependent epoxygenase activity, was without effect. These results indicate that hemodynamic changes produced by ET-1 are mediated by vasoconstrictor prostanoids and/or prostanoid-like substances, possibly, 20-HETE via activation of ET(A) and ET(B) receptors. However, the increase in MBF is mediated by vasodilator prostanoids or by NO via ET(B) receptor activation.  相似文献   

14.
20多年前,国外学者就报道了机体内某些组织中存在着细胞色素P-450(cytochrome P-450,CYP)。已经证实它能催化花生四烯酸(arachidonic acid,AA)的ω-羟基生成20-羟二十烷四烯酸(20-hydroxyeicosatetraenoic acid,20-HETE)。随着研究的不断深入,人们逐渐发现作为第二信使,20-HETE在调节血管平滑肌紧张度、肾功能、脑血流量和肺血管舒张过程中发挥了重要作用;外源性的20-HETE对心脏冠脉循环也有明显的调节作用;并且它与高血压和妊娠毒血症等疾病的发生和发展关系密切。但国内对于20-HETE的相关研究还鲜有报道,本文将主要就20-HETE在机体生理及病理及病理调节中的作用作一综述。  相似文献   

15.
Norepinephrine stimulates release of arachidonic acid from tissue lipids. Arachidonic acid metabolites generated through the lipoxygenase and cytochrome P-450 pathways but not cyclooxygenase stimulate mitogen activated protein (MAP) kinase activity and proliferation of vascular smooth muscle cells (VSMC). Moreover, norepinephrine has been shown to activate the Ras/MAP kinase pathway through generation of cytochrome P-450 metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE). The purpose of this study was to investigate the contribution of Ras in norepinephrine-induced mitogenesis in aortic VSMC. Farnesylation of Ras by farnesyl transferase is required for its full activation. Norepinephrine-induced DNA synthesis, as measured by [(3)H]-thymidine incorporation, was attenuated by inhibitors of Ras farnesyl transferase FPT III and BMS-191563. These agents also inhibited 20-HETE-stimulated [(3)H]-thymidine incorporation. In cells transiently transfected with dominant negative Ras (RasN17), norepinephrine, and 20-HETE-induced proliferation of VSMC was attenuated. Both norepinephrine and 20-HETE increased localization of Ras to plasma membrane and MAP kinase activity; FPT III attenuated these effects. These data suggest that VSMC proliferation induced by norepinephrine and 20-HETE is mediated by Ras/MAP kinase pathway.  相似文献   

16.
20-hydroxyeicosatetraenoic acid, a major renal P-450 metabolite of arachidonic acid, has been quantified in human urine using capillary gas chromatography/electron capture negative ion chemical ionization mass spectrometry. The urinary excretion of 20-hydroxyeicosatetraenoic acid was in the low pg/ml range. However, treatment of urine with beta-glucuronidase resulted in a 13- to 28-fold increase in its concentration. This suggests 20-hydroxyeicosatetraenoic acid differs from other eicosanoids in that it is excreted primarily as a glucuronide conjugate.  相似文献   

17.
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation. A single dose of 10-SUYS caused an acute reduction in mean arterial blood pressure in 8-wk-old spontaneously hypertensive rats. The decrease in mean arterial pressure was maximal 6 h after 10-SUYS treatment (17.9 +/- 3.2 mmHg; P < 0.05), and blood pressure returned to baseline levels within 24 h after treatment. Treatment with 10-SUYS was associated with a decrease in urinary 20-HETE formation in vivo and attenuation of the vasoconstrictor response of renal interlobar arteries to ANG II in vitro. These results provide further evidence that 20-HETE plays an important role in the regulation of blood pressure in the spontaneously hypertensive rat.  相似文献   

18.
Liver and kidney microsomes were isolated from rats raised on high-fat diets. In terms of energy, the high-fat diets contained 4% vegetable and 40% fish, vegetable or coconut oils. Each microsomal preparation was fortified with 1 mM NADPH and incubated with 5,8,11,14,17-eicosapentaenoic acid (20:5(n-3]. The number of metabolites formed was assessed by reverse-phase high-performance liquid chromatography (HPLC). To identify the major metabolites, large-scale incubations were done with 20:5(n-3) and microsomes from phenobarbital-treated rats. After extracts from the phenobarbital and dietary studies were combined, individual products were isolated by reverse- and normal-phase HPLC. The metabolites were identified by mass spectrometry, by chromatographic properties, and by comparing their retention times and mass spectra with those of chemically synthesized standards. For liver microsomes, the major metabolites were: 17,18-, 14,15-, 11,12- and 8,9-dihydroxyeicosatetraenoic acids, 20-hydroxyeicosapentaenoic acid, and 19-hydroxyeicosatetraenoic acid. For renal microsomes, the major metabolites were 20-hydroxyeicosapentaenoic and 19-hydroxypentaenoic acids. Because formation of these metabolites required NADPH and was enhanced by phenobarbital pretreatment, 20:5(n-3) appears to be oxidized by cytochrome P-450 monooxygenases. Based on reverse-phase high performance liquid chromatograms, all three high-fat diets may produce the same types of monooxygenase metabolites from 20:5(n-3). It remains unknown whether fish-oil diets induce the synthesis of monooxygenases to oxidize n-3 fatty acids, because these preliminary studies involved only two animals per dietary group.  相似文献   

19.
The vasodilatory effect of epoxyeicosatrienoic acids (EpETrE), especially 5(6)-EpETrE, has been reported recently and a role of P-450-dependent arachidonic acid monooxygenase metabolites was suggested in vasoregulation. Accordingly, the presence of P-450-dependent arachidonic acid monooxygenase was investigated in rat aortic smooth muscle cells. Incubation of the microsomes of rat cultured aortic smooth muscle cells with 14C-arachidonic acid in the presence of 1 mM NADPH resulted in the formation of oxygenated metabolites. The metabolites were separated and purified by reverse phase and straight phase high performance liquid chromatography and identified by gas chromatography-mass spectrometry. Identified metabolites were 5(6)-EpETrE, 5,6-dihydroxyeicosatrienoic acid (DiHETrE), and 14,15-DiHETrE. The formation of these metabolites was totally dependent on the presence of NADPH, and inhibitors of cytochrome P-450-dependent enzymes, SKF-525A and metyrapone, reduced the formation of these metabolites. This is the first report that cytochrome P-450-dependent arachidonic acid metabolites, especially 5(6)-EpETrE and 14(15)-EpETrE, can be produced in the microsomes of vascular smooth muscle cells of rats.  相似文献   

20.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号