首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) have been implicated in membrane-cytoskeletal events underlying cell adhesion, migration, secretion, and phagocytosis. In BV-2 microglial cells, lipopolysaccharide (LPS) elicited a dose-dependent increase in mRNA of both MRP (sixfold) and MARCKS (threefold) with corresponding increases in [3H]myristoylated and immunoreactive protein levels. LPS also produced significant increases in protein kinase C (PKC)-beta twofold and PKC-epsilon (1.5-fold). Pro-inflammatory cytokines produced by activated microglia (IL-1beta, IL-6, TNF-alpha) did not mimic LPS effects on MARCKS or MRP expression when added individually or in combination. LPS and IFN-gamma produced a synergistic induction of iNOS but not MARCKS or MRP. Induction of MARCKS and MRP by LPS was completely blocked by inhibitors of NF-kappaB (PDTC) and protein tyrosine kinases (herbimycin A), partially blocked by the p38 kinase inhibitor SB203580, and unaffected by the MEK inhibitor PD98059. LPS induction of iNOS was considerably more sensitive to all these inhibitors. The Src kinase inhibitor PP2 had no effect, while the closely related inhibitor PP1 actually increased LPS induction of MARCKS and MRP. Our results suggest that MARCKS and MRP may play an important role in LPS-activated microglia, but are not part of the neuroinflammatory response produced by cytokines.  相似文献   

2.
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.  相似文献   

3.
4.
Cyclooxygenase-2 (COX-2) and tyrosine kinase, which are involved in the biosynthesis of prostaglandin E(2) (PGE(2)) in mouse calvarial osteoblasts, are stimulated by cytokine interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and/or interleukin-6 (IL-6). IL-1beta and IL-6 and, to a lesser extent, TNF-alpha, enhances COX-2 mRNA levels in calvarial osteoblasts. Simultaneous treatment with IL-6 and IL-1beta and TNF-alpha resulted in enhanced COX-2 mRNA levels accompanied by the cooperative stimulation of PGE(2) biosynthesis compared to cells treated with IL-1beta or TNF-alpha or IL-6 alone. In contrast, the presence of TGF-beta reduced COX-2 mRNA level, PGE(2) biosynthesis and bone resorption induced by IL-1beta, TNF-alpha, IL-6 or a combination thereof. However, neither IL-1beta, TNF-alpha, IL-6 nor a combination of IL-1beta, TNF-alpha, IL-6 enhanced COX-1 mRNA levels in calvarial osteoblasts. A novel Src tyrosine kinase inhibitor, Herbimycin A (HERB), reduced COX-2 mRNA levels as well as PGE(2) production induced by IL-1beta, TNF-alpha and IL-6 or a combination of IL-1beta, TNF-alpha, IL-6, whereas COX-1 mRNA levels remained unaffected. Finally, HERB was found to inhibit in vitro bone resorption. These results indicate that the cooperative effects of IL-beta, TNF-alpha, IL-6 on PGE(2) production are due to the enhanced expression of the COX-2 gene and that tyrosine kinase(s) are involved in COX-2 signal transduction in mouse calvarial osteoblasts. Thus, the Src family of kinase inhibitors may be useful in treating diseases associated with elevated bone loss.  相似文献   

5.
6.
7.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

8.
9.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

10.
This study aimed to identify the intracellular signaling pathway in angiotensin II (Ang II)-induced upregulation of plasminogen activator inhibitor type 1 (PAI-1) mRNA expression in cultured rat glomerular mesangial cells, and to examine the interaction between Ang II and TGF-beta signaling. Ang II-induced upregulation of PAI-1 mRNA expression was prevented by a protein kinase C (PKC) inhibitor, bisindorylmaleimide I. While phorbol 12-myristate 13-acetate (PMA) upregulated the PAI-1 mRNA expression, a calcium ionophore, ionomycin, had little effect. Mesangial cells pretreated with PMA for 24 h to downregulate PKC demonstrated attenuated response to Ang II. A protein tyrosine kinase inhibitor, genistein, completely blocked both Ang II- and PMA-induced PAI-1 mRNA expression. Transforming growth factor-beta1 (TGF-beta1) alone induced the expression, and in the presence of Ang II, TGF-beta1 superinduced PAI-1 mRNA expression to a higher extent. Both bisindorylmaleimide I and genistein suppressed the Ang II plus TGF-beta1-induced PAI-1 mRNA upregulation to the basal level, while downregulation of PKC attenuated the synergistic upregulation of PAI-1 mRNA expression to the level comparable to TGF-beta1 alone. These data suggest that, in rat mesangial cells, (1) PKC and protein tyrosine kinase(s) are involved in the Ang II signaling cascade, (2) protein tyrosine kinase(s) works downstream from PKC in the cascade, and (3) there is an interaction between the Ang II and TGF-beta signal pathways downstream from PKC. In in vivo settings, local activation of renin-angiotensin and TGF-beta systems in the glomeruli may synergistically augment PAI-1 expression, promote mesangial matrix accumulation and progression of glomerular injury.  相似文献   

11.
12.
Lee JS  Kim IS  Ryu JS  Yun CY 《Cytokine》2008,42(3):365-371
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C δ (PKC δ), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC δ, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5 min and peaked at 30 min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC δ (p < 0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .  相似文献   

13.
14.
15.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway.  相似文献   

16.
Han YL  Kang J  Li SH 《生理学报》2003,55(3):265-272
采用Spprague-Dawley大鼠胸主动脉中膜、外膜和培养的血管平滑肌细胞(VSMCs)作材料,鉴定不同类型的血管组织经炎性介质刺激后其一氧化氮(NO)的产生来源,闻明蛋白激酶C(PKC)和蛋白酪氨酸激酶(PTK)介导大鼠VSMCs生成NO的调控机制。大鼠VSMCs经脂多糖(LPG)和细胞因子(TNF-α,IL-1β)处理后,以剂量依赖方式促进NO释放。采用Western Blot证实经刺激的VSMCs伴有iNOS表达上调。进一步实验表明PKC和PTK参与LPS和细胞因子诱导NO生成的胞内信号转导。用PKC抑制剂H7与VSMCs共培育,H7能明显减少LPS、TNF-α和IL-1β诱导细胞NO的形成。白屈菜赤碱亦可抑制NO的生成,但HAl004对VSMCs的NO生成无抑制作用,提示PKC参与NO的生成与调控。PTK抑制剂genistein和tyrphostin AG18均能抑制由LPS、TNF-α和IL-1β引发VSMCs释放NO,同时伴iNOS蛋白表达下调,而PKC抑制剂不能阻断iNOS的表达。上述观察结果提示,PKC介导LPS和细胞因子诱导细胞合成NO可能是通过iNOS翻译后加工;而PTK则以上调iNOS表达而促增NO生成。  相似文献   

17.
Src tyrosine kinases (TKs) are signaling proteins involved in cell signaling pathways toward cytoskeletal, membrane and nuclear targets. In the present study, using a selective Src TK inhibitor, PP1, we investigated the roles of Src TKs in the key pulmonary responses, NF-kappaB activation, and integrin signaling during acute lung injury in BALB/C mice intratracheally treated with LPS. LPS resulted in c-Src phosphorylation in lung tissue and the phospho-c-Src was predominantly localized in recruited neutrophils and alveolar macrophages. PP1 inhibited LPS-induced increases in total protein content in bronchoalveolar lavage fluid, neutrophil recruitment, and increases in the production or activity of TNF-alpha and matrix metalloproteinase-9. PP1 also blocked LPS-induced NF-kappaB activation, and phosphorylation and degradation of IkappaB-alpha. The inhibition of NF-kappaB activation by PP1 correlated with a depression of LPS-induced integrin signaling, which included increases in the phosphorylations of integrin beta(3), and of the focal adhesion kinase (FAK) family members, FAK and Pyk2, in lung tissue, and reductions in the fibrinogen-binding activity of alveolar macrophages. Moreover, treatment with anti-alpha(v), anti-beta(3), or Arg-Gly-Asp-Ser (RGDS), inhibited LPS-induced NF-kappaB activation. Taken together, our findings suggest that Src TKs play a critical role in LPS-induced activations of NF-kappaB and integrin (alpha(v)beta(3)) signaling during acute lung injury. Therefore, Src TK inhibition may provide a potential means of ameliorating inflammatory cascade-associated lung injury.  相似文献   

18.
In Alzheimer's disease, beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated glia contribute to neurotoxicity through the induction of inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor-alpha (TNFalpha) and the production of neurotoxic free radicals, mediated in part by the expression of inducible nitric-oxide synthase (iNOS). Here, we address the possibility that Abeta-stimulated iNOS expression might result from an initial induction of IL-1beta and TNFalpha. We find that in Abeta-stimulated astrocyte cultures, IL-1beta and TNFalpha production occur before iNOS production, new protein synthesis is required for increased iNOS mRNA levels, and the IL-1 receptor antagonist IL-1ra can inhibit nitrite accumulation. Likewise, dominant-negative mutants of tumor necrosis factor-alpha receptor-associated factor (TRAF) 6, TRAF2, and NFkappaB-inducing kinase (NIK), intracellular proteins involved in IL-1 and TNFalpha receptor signaling cascades, inhibit Abeta-stimulated iNOS promoter activity. Our data suggest that Abeta stimulation of astrocyte iNOS is mediated in part by IL-1beta and TNFalpha, and involves a TRAF6-, TRAF2-, and NIK-dependent signaling mechanism.  相似文献   

19.
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号