共查询到20条相似文献,搜索用时 0 毫秒
1.
Herrera GM Heppner TJ Nelson MT 《American journal of physiology. Cell physiology》2001,280(3):C481-C490
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels. 相似文献
2.
3.
三磷酸肌醇对猪冠状动脉平滑肌细胞大电导钙激活钾通道的作用 总被引:3,自引:1,他引:3
应用膜片钳单通道电流记录技术,研究三磷酸肌醇(trisphosphateinositol,IP3)对猪冠状动脉平滑肌细胞大电导钙激活钾通道(large-conductanceCa2+-activatedpotassiumchannels,BKchannels)的作用。结果显示:在内面向外式(inside-out)膜片下,IP3(10~50μmol/L)可以浓度依赖性地增加通道的开放概率,而对电流幅值无明显影响,开放概率的增加是通过明显缩短平均关闭时间实现的(n=11,P<0.01);洗去药物后通道活性可以恢复到对照水平;IP3对通道的激活作用不随时间而衰减;IP3的降解产物对通道没有明显的激活作用。结果表明:在inside-out膜片下,IP3能够激活猪冠状动脉平滑肌细胞BK通道。 相似文献
4.
Clark SG Fuchs LC 《American journal of physiology. Heart and circulatory physiology》2000,279(6):H2598-H2603
Previously, we showed that development of myocardial necrotic lesions is associated with impaired endothelium-dependent coronary artery relaxation in young cardiomyopathic hamsters. Since active necrosis declines with aging, this study was designed to determine whether coronary artery endothelium-dependent relaxation to ACh is restored and to identify the mechanisms mediating this effect. Intraluminal diameter was recorded in coronary arteries (150-250 micrometer) from control (C, 297 +/- 5 days old) and cardiomyopathic (M, 296 +/- 4 days old) hamsters. Relaxation to ACh (10(-9)-3 x 10(-5) M) was similar in vessels from C and M hamsters. However, mechanisms mediating relaxation to ACh were altered. Inhibition of nitric oxide synthase (NOS) activity with N-nitro-L-arginine (1 mM) had a greater inhibitory effect in vessels from C hamsters, indicating a reduction in NOS-dependent relaxation in vessels from M hamsters. Conversely, inhibition of large Ca(2+)-dependent K(+) (BK(Ca)) channels with charybdotoxin (CTX, 0.1 microM) had a greater inhibitory effect in vessels from M hamsters. In the presence of both N-nitro-L-arginine and CTX, relaxation to ACh was abolished in both groups. CTX (0.1 micrometer) produced a 50 +/- 4 and 30 +/- 3% contraction of vessels from M and C hamsters, respectively, indicating an enhanced role for BK(Ca) channels in regulation of coronary artery tone in M hamsters. Finally, vasodilatory cyclooxygenase products contributed to ACh-induced relaxation in vessels from M, but not C, hamsters. In conclusion, NOS-dependent relaxation of coronary small arteries is reduced in the late stage of cardiomyopathy. An increase in relaxation mediated by BK(Ca) channels and vasodilatory cyclooxygenase products compensates for this effect. 相似文献
5.
pH effects on high conductance Ca2+-activated K+ channels (BK(Ca)) in human internal mammary artery smooth muscle cells 总被引:2,自引:0,他引:2
Raingo J Rebolledo A Grassi de Gende AO Sanz N Tommasi J Milesi V 《Life sciences》2005,77(16):1993-2003
INTRODUCTION: In vascular smooth muscle cells, different types of K+ channels participate in the regulation of membrane potential and consequently in the contractile behavior of the vessel. There is little information about the properties and role of K+ channels in human internal mammary artery (HIMA), the vessel of choice for coronary revascularization. METHODS: Patch-clamp technique on isolated HIMA smooth muscle cells was used. RESULTS: This work presents for the first time single-channel properties of the high conductance Ca2+-activated K+ channel (BK(Ca)) of HIMA. It presents a single-channel conductance of 228+/-4 pS (n=44, 8 cells), is sensitive to 100 nM iberiotoxin, and its open probability is Ca2+- and voltage-dependent. Inside-out results show that BK(Ca) channels in HIMA are directly activated by increasing the pH of intracellular media (NPo=0.096+/-0.032 at pH 7.4 and NPo=0.459+/-0.111 at pH 7.6, n=12 cells, p<0.05) and inhibited by lowering this pH (NPo=0.175+/-0.067 at pH 7.4 and NPo=0.051+/-0.019 at pH 6.8, n=13 cells, p<0.05). CONCLUSIONS: The evidences presented about single-channel properties and intracellular pH sensitivity of BK(Ca) from HIMA smooth muscle cells provide useful information to elucidate physiological or pathological mechanisms in this vessel, as well as for future studies where drugs could have BK(Ca) channels as targets for pharmacological therapies. 相似文献
6.
Rogers PA Chilian WM Bratz IN Bryan RM Dick GM 《American journal of physiology. Heart and circulatory physiology》2007,292(3):H1404-H1411
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation. 相似文献
7.
8.
Zhang HY McPherson BC Liu H Baman TS Rock P Yao Z 《American journal of physiology. Heart and circulatory physiology》2002,282(4):H1395-H1403
Oxygen radicals and protein kinase C (PKC) mediate ischemic preconditioning. Using a cultured chick embryonic cardiomyocyte model of hypoxia and reoxygenation, we found that the oxygen radicals generated by ischemic preconditioning were H(2)O(2). Like preconditioning, H(2)O(2) selectively activated the epsilon-isoform of PKC in the particulate compartment and increased cell viability after 1 h of hypoxia and 3 h of reoxygenation. The glutathione peroxidase ebselen (converting H(2)O(2) to H(2)O) and the superoxide dismutase inhibitor diethyldithiocarbamic acid abolished the increased H(2)O(2) and the protection of preconditioning. PKC activation with phorbol 12-myristate 13-acetate increased cell survival; the protection of preconditioning was blocked by epsilonV(1-2), a selective PKC-epsilon antagonist. Similar to preconditioning, the protection of PKC activation was abolished by mitochondrial K(ATP) channel blockade with 5-hydroxydecanoate or by GABA receptor stimulation with midazolam or diazepam. In addition, PKC, mitochondrial ATP-sensitive K(+) (K(ATP)) channels, and GABA receptors had no effects on H(2)O(2) generated by ischemic preconditioning before prolonged hypoxia and reoxygenation. We conclude that H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via activating PKC-epsilon. Through this signal transduction, preconditioning protects ischemic cardiomyocytes. 相似文献
9.
本研究旨在观察氯离子通道阻断剂尼氟灭酸(niflumic acid,NFA)引起豚鼠耳蜗螺旋动脉平滑肌细胞产生超极化的机制。以豚鼠为实验动物,运用细胞内微电极和全细胞膜片钳记录技术,观察NFA和其它药物对急性分离的耳蜗螺旋动脉平滑肌细胞的作用。结果显示:NFA、indanyloxyacetic acid94(LAh-94)和diSOdium4,4’-diisothiocyanatostilbene-2,2’-disulfonate(DIDS)可使低静息膜电位的细胞产生超极化,但对高静息膜电位的细胞无明显作用。低静息膜电位细胞的平均静息电位为(-42.47±1.38)mV(n=24),100μmol/LNFA、10μmol/LIAA-94和200μmol/LDIDS分别使细胞超极化至(13.7±4.3)mV=9,P〈0.01),(11.4±4.2)mV(n=7,P〈0.01)和(12.3±3.7)mV(n=8,P〈0.01),这种氯离子通道阻断剂引起细胞超极化反应的效应呈浓度依赖性。NFA引起的超极化和外向电流几乎完全被100nmol/L iberiotoxin、100nmol/L charybdotoxin、10mmol/L tetraethylammonium、50μmol/LBAPTA—AM、10μmol/Lryanodine和0.1-10mmol/Lcaffeine阻断,但不能被100μmol/Lnifedipine、100μmol/LCdCI,和无Ca^2+灌流外液阻断。结果捉示:氯离_了通道的阻断剂NFA可通过平滑肌细胞内钙库的钙释放增加细胞内钙,进而激活钙依赖的钾通道,产生耳蜗螺旋动脉平滑肌细胞的超极化反应。 相似文献
10.
Zhang Y Oltman CL Lu T Lee HC Dellsperger KC VanRollins M 《American journal of physiology. Heart and circulatory physiology》2001,280(6):H2430-H2440
Epoxyeicosatrienoic acids (EETs) are released from endothelial cells and potently dilate small arteries by hyperpolarizing vascular myocytes. In the present study, we investigated the structural specificity of EETs in dilating canine and porcine coronary microvessels (50-140 microm ID) and activating large-conductance Ca2+-activated K+ (BK(Ca)) channels. The potencies and efficacies of EET regioisomers and enantiomers were compared with those of two EET homologs: epoxyeicosaquatraenoic acids (EEQs), which are made from eicosapentaenoic acid by the same cytochrome P-450 epoxygenase that generates EETs from arachidonic acid, and epoxydocosatetraenoic acids (EDTs), which are EETs that are two carbons longer. With EC50 values of 3-120 pM but without regio- or stereoselectivity, EETs potently dilated canine and porcine microvessels. Surprisingly, the EEQs and EDTs had comparable potencies and efficacies in dilating microvessels. Moreover, 50 nM 13,14-EDT activated the BK(Ca) channels with the same efficacy as either 11,12-EET enantiomer at 50 nM. We conclude that coronary microvessels and BK(Ca) channels possess low structural specificity for EETs and suggest that EEQs and EDTs may thereby also be endothelium-derived hyperpolarizing factors. 相似文献
11.
EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization
Benoit C Renaudon B Salvail D Rousseau E 《American journal of physiology. Lung cellular and molecular physiology》2001,280(5):L965-L973
Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K(+) conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel blocker. Moreover, 3 microM 8,9- or 14,15-EET induced hyperpolarizations of -12 +/- 3.5 and -16 +/- 3 mV, with EC(50) values of 0.13 and 0.14 microM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BK(Ca) channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BK(Ca) channels at low free Ca(2+) concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect. 相似文献
12.
Wenna Zhang Xueqin Feng Yumeng Zhang Miao Sun Lingjun Li Qinqin Gao Jiaqi Tang Pengjie Zhang Juanxiu Lv Xiuwen Zhou Zhice Xu 《Journal of cellular and molecular medicine》2020,24(5):3192-3202
As a common complication of pregnancy, gestational hypoxia has been shown to predispose offspring to vascular dysfunction. Propionate, one of short-chain fatty acids, exerts cardioprotective effects via reducing blood pressure. This study examined whether prenatal hypoxia impaired propionate-stimulated large-conductance Ca2+-activated K+ (BK) channel activities in vascular smooth muscle cells (VSMCs) of offspring. Pregnant rats were exposed to hypoxia (10.5% oxygen) and normoxia (21% oxygen) from gestational day 7-21. At 6 weeks of age, VSMCs in mesenteric arteries of offspring were analysed for BK channel functions and gene expressions. It was shown firstly that propionate could open significantly BK single channel in VSMCs in a concentration-dependent manner. Antagonists of G protein βγ subunits and inositol trisphosphate receptor could completely suppress the activation of BK by propionate, respectively. Gαi/o and ryanodine receptor were found to participate in the stimulation on BK. Compared to the control, vasodilation and increments of BK NPo (the open probability) evoked by propionate were weakened in the offspring by prenatal hypoxia with down-regulated Gβγ and PLCβ. It was indicated that prenatal hypoxia inhibited propionate-stimulated BK activities in mesenteric VSMCs of offspring via reducing expressions of Gβγ and PLCβ, in which endoplasmic reticulum calcium release might be involved. 相似文献
13.
Na(+)- Ca(2+) exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca(2+) pool along with the SER Ca(2+) pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca(2+) depletion on NCX-SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na(+)-loaded and then placed in either a Na(+)-containing or in a Na(+)-substituted solution. Subsequently, the difference in Ca(2+) entry between the two groups was examined and defined as the NCX mediated Ca(2+) entry. The NCX mediated Ca(2+) entry in the smooth muscle cells was monitored using two methods: Ca(2+)sensitive fluorescence dye Fluo-4 and radioactive Ca(2+). Ca(2+)-entry was greater in the Na(+)-substituted cells than in the Na(+)-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca(2+) entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na(+)-substituted solution with or without thapsigargin. SER Ca(2+) depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca(2+) entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca(2+) entry may protect the cells against Ca(2+)-overload during ischemia-reperfusion when SERCA2 is known to be damaged. 相似文献
14.
Penheiter AR Bogoger M Ellison PA Oswald B Perkins WJ Jones KA Cremo CR 《The Journal of biological chemistry》2007,282(7):4336-4344
The effect of H(2)O(2) on smooth muscle heavy meromyosin (HMM) and subfragment 1 (S1) was examined. The number of molecules that retained the ability to bind ATP and the actinactivated rate of P(i) release were measured by single-turnover kinetics. H(2)O(2) treatment caused a decrease in HMM regulation from 800- to 27-fold. For unphosphorylated and phosphorylated heavy meromyosin and for S1, approximately 50% of the molecules lost the ability to bind to ATP. H(2)O(2) treatment in the presence of EDTA protected against ATPase inactivation and against the loss of total ATP binding. Inactivation of S1 versus time correlated to a loss of reactive thiols. Treatment of H(2)O(2)-inactivated phosphorylated HMM or S1 with dithiothreitol partially reactivated the ATPase but had no effect on total ATP binding. H(2)O(2)-inactivated S1 contained a prominent cross-link between the N-terminal 65-kDa and C-terminal 26-kDa heavy chain regions. Mass spectral studies revealed that at least seven thiols in the heavy chain and the essential light chain were oxidized to cysteic acid. In thiophosphorylated porcine tracheal muscle strips at pCa 9 + 2.1 mM ATP, H(2)O(2) caused a approximately 50% decrease in the amplitude but did not alter the rate of force generation, suggesting that H(2)O(2) directly affects the force generating complex. Dithiothreitol treatment reversed the H(2)O(2) inhibition of the maximal force by approximately 50%. These data, when compared with the in vitro kinetic data, are consistent with a H(2)O(2)-induced loss of functional myosin heads in the muscle. 相似文献
15.
Yu JZ Zhang DX Zou AP Campbell WB Li PL 《American journal of physiology. Heart and circulatory physiology》2000,279(3):H873-H881
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization. 相似文献
16.
A. B. Elmoselhi M. Blennerhassett S. E. Samson A. K. Grover 《Molecular and cellular biochemistry》1995,151(2):149-155
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR
sarcoplasmic reticulum
- ER
endoplasmic reticulum
- PM
plasma membrane
- CPA
cyclopiazonic acid
- DTT
dithiothreitol 相似文献
17.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction. 相似文献
18.
Dopico AM 《American journal of physiology. Cell physiology》2003,284(6):C1468-C1480
Ethanol inhibition of large-conductance,Ca2+-activated K+ (BKCa) channelsin aortic myocytes may contribute to the direct contraction of aorticsmooth muscle produced by acute alcohol exposure. In this tissue,BKCa channels consist of pore-forming (bslo) and modulatory () subunits. Here, modulation of aortic myocyteBKCa channels by acute alcohol was explored by expressingbslo subunits in Xenopus oocytes, in the absenceand presence of 1-subunits, and studying channelresponses to clinically relevant concentrations of ethanol in excisedmembrane patches. Overall, average values of bslo channelactivity (NPo, with N = no. ofchannels present in the patch; Po = probability of a single channel being open) in response to ethanol(3-200 mM) mildly decrease when compared with pre-ethanol,isosmotic controls. However, channel responses show qualitativeheterogeneity at all ethanol concentrations. In the majority of patches(42/71 patches, i.e., 59%), a reversible reduction inNPo is observed. In this subset, the maximaleffect is obtained with 100 mM ethanol, at whichNPo reaches 46.2 ± 9% of control. Thepresence of 1-subunits, which determines channel sensitivity to dihydrosoyaponin-I and 17-estradiol, fails to modifyethanol action on bslo channels. Ethanol inhibition of bslo channels results from a marked increase in the meanclosed time. Although the voltage dependence of gating remainsunaffected, the apparent effectiveness of Ca2+ to gate thechannel is decreased by ethanol. These changes occur withoutmodifications of channel conduction. In conclusion, a new molecularmechanism that may contribute to ethanol-induced aortic smooth musclecontraction has been identified and characterized: a functionalinteraction between ethanol and the bslo subunit and/or itslipid microenvironment, which leads to a decrease in BKCachannel activity. 相似文献
19.
It is well recognized that pathologically increased mechanical stretch plays a critical role in vascular remodeling during hypertension. However, how the stretch modulates the functions of ion channels of vascular smooth muscle cells (VSMCs) remains to be elucidated. Here, we demonstrated the effects of mechanical stretch on the activity of large conductance calcium, voltage-activated potassium (BK) and L-type Ca2+ channels. In comparison with 5% stretch (physiological), 15% stretch (pathological) upregulated the current density of L-type Ca2+ and BK channels as well as the frequency and amplitude of calcium oscillation in VSMCs. 15% stretch also increased the open probability and mean open time of the BK channel compared with 5% stretch. BK and L-type Ca2+ channels participated in the mechanical stretch-modulated calcium oscillation. Our results suggested that during hypertension, pathological stretch altered the activity of BK and L-type Ca2+ channels and manipulated the calcium oscillation of VSMCs. 相似文献
20.
Brzezinska AK Gebremedhin D Chilian WM Kalyanaraman B Elliott SJ 《American journal of physiology. Heart and circulatory physiology》2000,278(6):H1883-H1890
Peroxynitrite (ONOO(-)) is a contractile agonist of rat middle cerebral arteries. To determine the mechanism responsible for this component of ONOO(-) bioactivity, the present study examined the effect of ONOO(-) on ionic current and channel activity in rat cerebral arteries. Whole cell recordings of voltage-clamped cells were made under conditions designed to optimize K(+) current. The effects of iberiotoxin, a selective inhibitor of large-conductance Ca(2+)-activated K(+) (BK) channels, and ONOO(-) (10-100 microM) were determined. At a pipette potential of +50 mV, ONOO(-) inhibited 39% of iberiotoxin-sensitive current. ONOO(-) was selective for iberiotoxin-sensitive current, whereas decomposed ONOO(-) had no effect. In excised, inside-out membrane patches, channel activity was recorded using symmetrical K(+) solutions. Unitary currents were sensitive to increases in internal Ca(2+) concentration, consistent with activity due to BK channels. Internal ONOO(-) dose dependently inhibited channel activity by decreasing open probability and mean open times. The inhibitory effect of ONOO(-) could be overcome by reduced glutathione. Glutathione, added after ONOO(-), restored whole cell current amplitude to control levels and reverted single-channel gating to control behavior. The inhibitory effect of ONOO(-) on membrane K(+) current is consistent with its contractile effects in isolated cerebral arteries and single myocytes. Taken together, our data suggest that ONOO(-) has the potential to alter cerebral vascular tone by inhibiting BK channel activity. 相似文献