首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and differentiation-related pathways are much more active in immature than in mature, fully differentiated smooth muscle. Because mitogen-activated protein kinases (MAPK) are intimately involved with growth and differentiation, and the extracellular signal-regulated kinase (ERK) subfamily of MAPKs are involved in some contractile responses, the present studies examined the hypothesis that ERKs play an important and age-dependent role in smooth muscle contraction. The MAPK inhibitors PD098059 and UO126 both inhibited serotonin (5-HT) concentration-response relations more effectively in carotid arteries from term fetal lambs, than in corresponding arteries from mature non-pregnant adult sheep. This inhibition involved significant decreases in both the pD2 (adult: 2-fold; fetus: 4- to 15-fold) and the maximum efficacy (adult: 15-19%; fetus: 34-39%) of 5-HT. Accompanying this age-dependent effect on contraction, quantitative Western blot assays revealed that ERK1 and ERK2 abundances were 39% and 164% greater, respectively, in fetal than in adult carotid arteries. The abundance of the putative ERK target, caldesmon, however, was about 7-fold greater in adult than in fetal arteries. Together, the present results support the view that ERK abundance and activity is upregulated in fetal relative to adult arteries, and that one consequence of this upregulation is that the contribution of ERKs to contraction, at least that initiated by 5-HT2a receptors, is greater in fetal than adult carotid arteries. Whereas the phosphorylation mechanisms through which ERKs augment contraction remain uncertain and controversial, the present results suggest that emphasis should be shifted away from caldesmon and toward other critical contractile proteins, and how these proteins may contribute differently to development of agonist-induced contractile force in immature and mature arteries.  相似文献   

2.
Postnatal decreases in vascular reactivity involve decreases in the thick filament component of myofilament calcium sensitivity, which is measured as the relationship between cytosolic calcium concentration and myosin light chain (MLC20) phosphorylation. The present study tests the hypothesis that downregulation of thick filament reactivity is due to downregulation of myosin light chain kinase (MLCK) activity in adult compared with fetal arteries. Total MLCK activity, calculated as %MLC20 phosphorylated per second in intact arteries during optimal inhibition of myosin light chain phosphatase activity, was significantly less in adult (6.56+/-0.29%) than in fetal preparations (7.39+/-0.53%). In situ MLC20 concentrations (microM) in adult (198+/-28) and fetal arteries (236+/-44) did not differ significantly. In situ MLCK concentrations (microM), however, were significantly greater in adult (8.21+/-0.59) than in fetal arteries (1.83+/-0.13). In situ MLCK activities (ng MLC20 phosphorylated.s(-1).ng MLCK(-1)) were significantly less in adult (0.26+/-0.01) than in fetal arteries (1.52+/-0.11). In contrast, MLCK activities in adult (15.8+/-1.5) and fetal artery homogenates (17.3+/-1.3) were not significantly different. When in situ fractional activation was calculated, adult values (1.72+/-0.17%) were significantly less than fetal values (9.08+/-0.83%). Together, these results indicate that decreased thick filament reactivity in adult compared with fetal ovine carotid arteries is due at least in part to greater MLCK activity in fetal arteries, which in turn cannot be explained by differences in MLCK, MLC20, or calmodulin concentrations. Instead, this difference appears to involve age-related differences in fractional activation of the MLCK enzyme.  相似文献   

3.
The present study tests the hypothesis that chronic hypoxia enhances reactivity to nitric oxide (NO) through age-dependent increases in soluble guanylate cyclase (sGC) and protein kinase G (PKG) activity. In term fetal and adult ovine carotids, chronic hypoxia had no significant effect on mRNA levels for the beta1-subunit of sGC, but depressed sGC abundance by 16% in fetal and 50% in adult arteries, through possible depression of rates of mRNA translation (15% in fetal and 50% in adult) and/or increased protein turnover. Chronic hypoxia also depressed the catalytic activity of sGC, but only in fetal arteries (63%). Total sGC activity was reduced by chronic hypoxia in both fetal (69%) and adult (37%) carotid homogenates, but this effect was not observed in intact arteries when sGC activity was measured by timed accumulation of cGMP. In intact arteries treated with 300 microM 3-isobutyl-1-methylxanthine (IBMX), chronic hypoxia dramatically enhanced sGC activity in fetal (186%) but not adult (89%) arteries. This latter observation suggests that homogenization either removed an sGC activator, released an sGC inhibitor, or altered the phosphorylation state of the enzyme, resulting in reduced activity. In the absence of IBMX, chronic hypoxia had no significant effect on rates of cGMP accumulation. Chronic hypoxia also depressed the ability of the cGMP analog, 8-(p-chlorophenylthio)-cGMP, to promote vasorelaxation in both fetal (8%) and adult (12%) arteries. Together, these results emphasize the fact that intact and homogenized artery studies of sGC activity do not always yield equivalent results. The results further suggest that enhancement of reactivity to NO by chronic hypoxia must occur upstream of PKG and can only be possible if changes in cGMP occurred in functional compartments that afforded either temporal or chemical protection to the actions of phosphodiesterase. The range and age dependence of hypoxic effects observed also suggest that some responses to hypoxia must be compensatory and homeostatic, with reactivity to NO as the primary regulated variable.  相似文献   

4.
Whereas previous studies have established that many mechanisms mediating pharmacomechanical coupling are subject to regulation, evidence of physiological regulation of the coupling efficiency between receptor activation and second-messenger production is scarce. The present studies address the hypothesis that acute hypoxia and maturation can influence the mass of second-messenger production for each activated agonist-bound receptor ("receptor gain"). For this assessment, receptor density and agonist affinity values were used to calculate 5-hydroxytryptamine (5-HT) concentrations that would produce standardized numbers of bound receptors (8.5 fmol/mg protein) in each experimental group and thus minimize effects of age or hypoxia on receptor density or agonist affinity. After 3 min of exposure to these 5-HT concentrations, normoxic magnitudes of contraction were similar (as %potassium maxima) in fetal (50 +/- 14%) and adult (40 +/- 9%) arteries, but hypoxia (PO(2) approximately 9--12 Torr for 30 min) depressed contractile tensions with a significantly different time course and magnitude in fetal (30 +/- 10%) and adult (17 +/- 11%) arteries (P < 0.05). Basal inositol 1,4,5-trisphosphate (IP(3)) values (in pmol/mg protein) were significantly greater in fetal (94 +/- 16) than in adult (44 +/- 6) arteries, and integrated areas above baseline for the IP(3) time courses (in nmol-s/mg protein) were significantly greater in fetal than in adult arteries both in normoxic (14.3 +/- 1.8 vs. 9.1 +/- 1.6) and hypoxic (15.0 +/- 2.1 vs. 8.6 +/- 1.2) conditions (P < 0.05). Hypoxia altered the IP(3) time courses both in the fetus and the adult but had no significant effect on IP(3 )mobilization or receptor gain. These data demonstrate that for the 5-HT(2a) receptor predominant in this preparation, receptor gain can be experimentally determined, is not influenced by acute hypoxia, but is greater in fetal than in adult ovine carotid arteries.  相似文献   

5.
6.
In ovine cerebral arteries, adrenergic-mediated vasoconstrictor responses differ significantly with developmental age. We tested the hypothesis that, in part, these differences are a consequence of altered alpha(2)-adrenergic receptor (alpha(2)-AR) density and/or affinity. In fetal (approximately 140 days) and adult sheep, we measured alpha(2)-AR density and affinity with the antagonist [(3)H]idazoxan in main branch cerebral arteries and other vessels. We also quantified contractile responses in middle cerebral artery (MCA) to norepinephrine (NE) or phenylephrine in the presence of the alpha(2)-AR antagonists yohimbine and idazoxan and contractile responses to the alpha(2)-AR agonists clonidine and UK-14304. In fetal and adult cerebral artery homogenates, alpha(2)-AR density was 201 +/- 18 and 52 +/- 6 fmol/mg protein, respectively (P < 0.01); however, antagonist affinity values did not differ. In fetal, but not adult, MCA, 10(-7) M yohimbine significantly decreased the pD(2) for NE-induced tension in the presence of 3 x 10(-5) M cocaine, 10(-5) M deoxycorticosterone, and 10(-6) M tetrodotoxin. In fetal, but not adult, MCA, UK-14304 induced a significant decrease in pD(2) for the phenylephrine dose-response relation. In addition, stimulation-evoked fractional NE release was significantly greater in fetal than in adult cerebral arteries. In the presence of 10(-6) M idazoxan to block alpha(2)-AR-mediated inhibition of prejunctional NE release, the fractional NE release was significantly increased in both age groups. We conclude that in fetal and adult ovine cerebral arteries, alpha(2)-AR appear to be chiefly prejunctional. Nonetheless, the fetal cerebral arteries appear to have a significant component of postjunctional alpha(2)-AR.  相似文献   

7.
Regulation of cytosolic calcium and myofilament calcium sensitivity varies considerably with postnatal age in cerebral arteries. Because these mechanisms also govern myogenic tone, the present study used graded stretch to examine the hypothesis that myogenic tone is less dependent on calcium influx and more dependent on myofilament calcium sensitization in term fetal compared with adult cerebral arteries. Term fetal and adult posterior communicating cerebral arteries exhibited similar myogenic responses, with peak tensions averaging 24 and 26% of maximum contractile force produced in any given tissue in response to an isotonic Krebs buffer containing 122 mM K(+) (K(max)) at optimum stretch ratios (working diameter/unstressed diameter) of 2.19 and 2.23, respectively. Graded stretch increased cytosolic Ca(2+) concentration at stretch ratios >2.0 in adult arteries, but increased Ca(2+) concentration only at stretch ratios >2.3 in fetal arteries. In permeabilized arteries, myogenic tone peaked at a stretch ratio of 2.1 in both fetal and adult arteries. The fetal %K(max) values at peak myogenic tone were not significantly different at either pCa 7.0 (23%) or pCa 5.5 (25%) but were significantly less at pCa 8.0 (8.4 +/- 2.3%). Conversely, adult %K(max) values at peak myogenic tone were significantly less at both pCa 8.0 (10.4 +/- 1.8%) and pCa 7.0 (16%) than at pCa 5.5 (27%). The maximal extents of stretch-induced increases in myosin light chain phosphorylation in intact fetal (20%) and adult (17%) arteries were similar. The data demonstrate that the cerebrovascular myogenic response is highly conserved during postnatal maturation but is mediated differently in fetal and adult cerebral arteries.  相似文献   

8.
We tested the hypothesis that chronic high-altitude (3,820 m) hypoxia during pregnancy was associated with the upregulation of endothelial nitric oxide (NO) synthase (eNOS) protein and mRNA in ovine uterine artery endothelium and enhanced endothelium-dependent relaxation. In pregnant sheep, norepinephrine-induced dose-dependent contractions were increased by removal of the endothelium in both control and hypoxic uterine arteries. The increment was significantly higher in hypoxic tissues. The calcium ionophore A23187-induced relaxation of the uterine artery was significantly enhanced in hypoxic compared with control tissues. However, sodium nitroprusside- and 8-bromoguanosine 3',5'-cyclic monophosphate-induced relaxations were not changed. Accordingly, chronic hypoxia significantly increased basal and A23187-induced NO release. Chronic hypoxia increased eNOS protein and mRNA levels in the endothelium from uterine but not femoral or renal arteries. In nonpregnant animals, chronic hypoxia increased eNOS mRNA in uterine artery endothelium but had no effects on eNOS protein, NO release, or endothelium-dependent relaxation. Chronic hypoxia selectively augments pregnancy-associated upregulation of eNOS gene expression and endothelium-dependent relaxation of the uterine artery.  相似文献   

9.
The binding sites of 5-HT3 and other Cys-loop receptors have been extensively studied, but there are no data on the entry and exit routes of ligands for these sites. Here we have used molecular dynamics simulations to predict the pathway for agonists and antagonists exiting from the 5-HT3 receptor binding site. The data suggest that the unbinding pathway follows a tunnel at the interface of two subunits, which is approximately 8 A long and terminates approximately 20 A above the membrane. The exit routes for an agonist (5-HT) and an antagonist (granisetron) were similar, with trajectories toward the membrane and outward from the ligand binding site. 5-HT appears to form many hydrogen bonds with residues in the unbinding pathway, and experiments show that mutating these residues significantly affects function. The location of the pathway is also supported by docking studies of granisetron, which show a potential binding site for granisetron on the unbinding route. We propose that leaving the binding pocket along this tunnel places the ligands close to the membrane and prevents their immediate reentry into the binding pocket. We anticipate similar exit pathways for other members of the Cys-loop receptor family.  相似文献   

10.
Several benzofuran derivatives linked to a 3-indoletetrahydropyridine through an alkyl chain were prepared and evaluated for serotonin transporter and 5-HT1A receptor affinities. Their design, synthesis and structure–activity relationships are described.  相似文献   

11.
New cis-, trans-2-butene and 1,2-bismethylbenzene analogues of MM77 and NAN-190 (1-[4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl]-pyrrolidine-2,5-dione and isoindole-1,3-dione, respectively) were synthesized. The differences in their in vitro affinity for serotonin 5-HT(7) and 5-HT(1A) receptors were explained using a conformational analysis. A bioactive conformation of those compounds for the 5-HT(7) receptor, different from that established for 5-HT(1A), was proposed.  相似文献   

12.
In addition to adrenergic innervation, cerebral arteries also contain neuronal nitric oxide synthase (nNOS)-expressing nerves that augment adrenergic nerve function. We examined the impact of development and chronic high-altitude hypoxia (3,820 m) on nNOS nerve function in near-term fetal and adult sheep middle cerebral arteries (MCA). Electrical stimulation-evoked release of norepinephrine (NE) was measured with HPLC and electrochemical detection, whereas nitric oxide (NO) release was measured by chemiluminescence. An inhibitor of NO synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), significantly inhibited stimulation-evoked NE release in MCA from normoxic fetal and adult sheep with no effect in MCA from hypoxic animals. Addition of the NO donor S-nitroso-N-acetyl-dl-penicillamine fully reversed the effect of l-NAME in MCA from normoxic animals with no effect in MCA from hypoxic animals. Electrical stimulation caused a significant increase in NO release in MCA from normoxic animals, an effect that was blocked by the neurotoxin tetrodotoxin, whereas there was no increase in NO release in MCA from hypoxic animals. Relative abundance of nNOS as measured by Western blot analysis was similar in normoxic fetal and adult MCA. However, after hypoxic acclimitization, nNOS levels dramatically declined in both fetal and adult MCA. These data suggest that the function of nNOS nerves declines during chronic high-altitude hypoxia, a functional change that may be related to a decline in nNOS protein levels.  相似文献   

13.
Exposure to long-term hypoxia (LTH) results in altered cortisol responses in the ovine fetus. The present study was designed to test the hypothesis that LTH alters adrenal responsiveness to fetal hypotension. Pregnant ewes were maintained at high altitude (3,820 meters) from day 30 of gestation. Normoxic control and LTH fetuses were catheterized on day 132 of gestation. In the LTH group, maternal Po(2) was maintained comparable to that observed at altitude ( approximately 60 mmHg) by nitrogen infusion through a tracheal catheter. On day 137, fetuses received a 5-h saline infusion followed by infusion of sodium nitroprusside to reduce fetal arterial pressure by 30-35% for 10 min. The study was repeated on day 139 of gestation with a continuous cortisol infusion (10 microg/min). Hypothalamic and pituitary tissues were collected from additional fetuses for assessment of glucocorticoid receptors. During the saline infusion in response to hypotension, plasma ACTH increased over preinfusion mean values in both groups (P < 0.05). Plasma cortisol concentrations increased in both groups concomitant with increased ACTH secretion. However, peak values in the LTH fetuses were significantly higher compared with controls (P < 0.05). During the cortisol infusion, the ACTH response was eliminated in both groups, with ACTH levels significantly lower in the LTH group (P < 0.05). Glucocorticoid receptor binding was not different between groups. These results demonstrate an enhanced cortisol response to hypotension in LTH fetuses that does not appear to be the result of an increase in negative feedback sensitivity of the hypothalamic-pituitary-adrenal axis.  相似文献   

14.
Hensler JG 《Life sciences》2003,72(15):1665-1682
Adaptive changes in the serotonergic system are generally believed to underlie the therapeutic effectiveness of the azapirone anxiolytics and a variety of antidepressant drugs. The serotonin-1A (5-HT(1A)) receptor has been implicated in affective disorders. Thus, studies of the regulation of 5-HT(1A) receptor function may have important implications for our understanding the role of this receptor in the mechanism of action of these therapeutic agents. This review focuses on the regulation of central 5-HT(1A) receptor function following administration of 5-HT(1A) receptor agonists or antidepressant drugs expected to increase the synaptic concentration of the neurotransmitter 5-HT. The majority of evidence supports regional differences in the regulation of central 5-HT(1A) receptor function following repeated agonist or antidepressant administration, which may be due to differences in processes involved in desensitization of the receptor at the cellular level. Region-specific differences in the regulation of 5-HT(1A) receptor function may be based on compensatory changes distal to the receptor, such as regulatory changes at the level of effector (e.g. adenylyl cyclase or ion channel), or at the level of the G protein such as changes in G protein expression, or phosphorylation of the G protein. It may be that the increase in serotonin neurotransmission, due to somatodendritic autoreceptor desensitization following agonist or antidepressant treatment, to normo-sensitive 5-HT(1A) receptors in certain brain regions (e.g. hippocampus or cortex) and to sub-sensitive 5-HT(1A) receptors in other brain regions (e.g. amygdala or hypothalamus) underlies the therapeutic efficacy of these drugs.  相似文献   

15.
Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain   总被引:4,自引:0,他引:4  
B J Hoffman  E Mezey 《FEBS letters》1989,247(2):453-462
  相似文献   

16.
The present study tests the hypothesis that age-dependent increases in endothelial vasodilator capacity are due to maturational increases in endothelial nitric oxide (NO) synthesis and release. Intact 4-cm carotid artery segments taken from term fetal lambs and nonpregnant adult sheep were perfused by using a closed system that enabled independent control of flow and inflow pressure and facilitated complete recovery of all NO released. Fluid shear stress induced a graded release of NO (in nmol NO x min x cm(-2) of luminal surface area) that was significantly greater in adult (890 +/- 140) than in fetal (300 +/- 40) carotid arteries at corresponding values of shear stress (5.9 +/- 0.3 dyn/cm2) but was independent of inflow pressure in both age groups. These age-related differences in NO release were not attributable to corresponding differences in endothelial NO synthase (eNOS) abundance, as eNOS protein levels (in ng of eNOS/cm2 of luminal surface area) were similar in adult (14 +/- 2) and fetal (12 +/- 1) arteries. Adult (80 +/- 15) and fetal (89 +/- 32) levels of eNOS mRNA (in 10(6) copies/cm2 of luminal surface area) were also similar. However, when NO release was normalized relative to the associated mass of eNOS protein to estimate eNOS-specific activity in situ, this value (in nmol NO x microg of eNOS(-1) x min(-1)) was significantly greater in adult (177 +/- 44) than in fetal (97 +/- 36) arteries when the endothelium was maximally activated by A-23187. Similarly, the slope of the relation between fluid shear stress and estimated eNOS-specific activity (in nmol NO x microg of eNOS(-1) x min(-1) per dyn/cm2) was also significantly greater in adult (6.8 +/- 0.1) than in fetal (2.9 +/- 0.1) arteries, which suggests that eNOS may be more sensitive to or more efficiently coupled to activating stimuli in adult compared with fetal arteries. We conclude that maturational increases in endothelial vasodilator capacity are attributable to age-dependent increases in NO release secondary to elevated eNOS-specific activity and involve more efficient coupling between endothelial activation and enhancement of eNOS activity in adult compared with fetal arteries.  相似文献   

17.
The permanent occlusion of bilateral common carotid arteries (2VO) in rats has been shown to cause progressive and long-lasting cognitive deficits which may be due to impairment of memory retention and/or memory recall process. To clarify the function of voltage dependent calcium channels and the receptor binding of nimodipine by chronic cerebral ischemia, we examined specific (+)-[3H]PN 200-110 binding and the effect of oral administration of nimodipine in brain regions and hearts of rats, at 2 weeks to 4 months after permanent 2VO. There was no significant difference in either dissociation constant (Kd) or maximal number of binding sites (Bmax) for (+)-[3H]PN 200-110 in the cerebral cortex, hippocampus, corpus striatum and thalamus between 2VO and sham rats. In addition, in vitro inhibitory effect of nimodipine on cerebral cortical (+)-[3H]PN 200-110 binding in 2VO rats was similar to that in sham rats. Compared to control rats, oral administration of nimodipine to both 2VO and sham rats at 2 months after permanent 2VO brought about a significant increase in Kd values of specific (+)-[3H]PN 200-110 binding in the cerebral cortex, hippocampus, thalamus and myocardium, and the increase in Kd values was much larger in brain regions of 2VO rats than sham rats. However, the increase in Kd values in the myocardium did not differ between 2VO and sham rats. This observation suggests an increased in vivo binding affinity for nimodipine in chronic ischemic brain. In conclusion, the present study has shown that oral administration of nimodipine may cause a greater occupation in vivo of 1,4-dihydropyridine (DHP) calcium channel antagonist receptors in brains of permanent 2VO rats than in sham rats. Thus, nimodipine may be pharmacologically effective in preventing brain dysfunction due to cerebral ischemia in vivo.  相似文献   

18.
Although abundant evidence indicates that chronic hypoxia can induce pulmonary vascular remodeling, very little is known of the effects of chronic hypoxia on cerebrovascular structure and function, particularly in the fetus. Thus the present study explored the hypothesis that chronic hypoxemia also influences the size and shape of cerebrovascular smooth muscle and endothelial cells, with parallel changes in the reactivity of these cells to endothelium-dependent vasodilator stimuli. To test this hypothesis, measurements of endothelial and vascular smooth muscle cell size and density were made in silver-stained common carotid and middle cerebral arteries from term fetal and nonpregnant adult sheep maintained at an altitude of 3,820 m for 110 days. Chronic hypoxia induced an age-dependent remodeling that led to smooth muscle cells that were larger in fetal arteries but smaller in adult arteries. Chronic hypoxia also increased endothelial cell density in fetal arteries but reduced it in adult arteries. These combined effects resulted in an increased (adult carotid), decreased (adult middle cerebral), or unchanged (fetal arteries) per cell serosal volume of distribution for endothelial factors. Despite this heterogeneity, the magnitude of endothelium-dependent vasodilatation to A23187, measured in vitro, was largely preserved, although sensitivity to this relaxant was uniformly depressed. N(G)-nitro-L-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, and endothelium denudation each independently blocked A23187-induced vasodilation without unmasking any residual vasoconstrictor effect. Indomethacin did not significantly attenuate A23187-induced relaxation except in the hypoxic adult middle cerebral, where a small contribution of prostanoids was evident. Vascular sensitivity to exogenous nitric oxide (NO) was uniformly increased by chronic hypoxia. From these results, we conclude that chronic hypoxia reduced endothelial NO release while also upregulating some component of the NO-cGMP-PKG vasodilator pathway. These offsetting effects appear to preserve endothelium-dependent vasodilation after adaptation to chronic hypoxia.  相似文献   

19.
To assess the pharmacodynamic profile of ALEPH-2, a phenylisopropylamine derivative with alleged anxiolytic and hallucinogenic properties, Xenopus laevis oocytes were microinjected with either of the rat cRNA for the 5-HT2A or the 5-HT2C receptor. Concentration-response curves were obtained following the exposure of the oocytes to varying concentrations of either ALEPH-2 or 5-hydroxytryptamine (5-HT) for 10 s. ALEPH-2 is a partial agonist on the 5-HT2A receptor with a similar potency to 5-HT. In contrast, ALEPH-2 is a full 5-HT2C receptor agonist and is about 15-fold less potent than 5-HT. Pre-application of 1 microM ritanserin antagonized the responses induced by 5-HT and ALEPH-2 to the same extent; however, the 5-HT2A receptor is more sensitive to ritanserin blockade than the 5-HT2C receptor.  相似文献   

20.
The serotonin 5-HT7 G protein-coupled receptor (GPCR) is a proposed pharmacotherapeutic target for a variety of central and peripheral indications, albeit, there are no approved drugs selective for binding 5-HT7. We previously reported that a lead analog based on the 5-substituted-N,N-disubstituted-1,2,3,4-tetrahydronaphthalen-2-amine (5-substituted-2-aminotetralin, 5-SAT) scaffold binds with high affinity at the 5-HT7 GPCR, and can treat symptoms of autism in mouse models; subsequently, the lead was found to have high affinity at the 5-HT1A GPCR. Herein, we report the synthesis of novel 5-SAT analogs to develop a 3-dimensional quantitative structure—affinity relationship (3D-QSAR) at the human 5-HT7 receptor for comparison with similar studies at the highly homologous 5-HT1A receptor. We report 35 new 5-SAT ligands, some with very high affinity (Ki ≤ 1 nM) and stereoselectivity at 5-HT7 + or 5-HT1A receptors, several with modest selectivity (up to 12-fold) for binding at 5-HT7, and, several ligands with high selectivity (up to 40-fold) at the 5-HT1A receptor. 3D-QSAR results indicate that steric extensions at the C(5)-position improve selectivity for the 5-HT7 over 5-HT1A receptor, while steric and hydrophobic extensions at the chiral C(2)-amino position impart 5-HT1A selectivity. In silico receptor homology modeling studies, supplemented with molecular dynamics simulations and binding free energy calculations, were used to rationalize experimentally-determined receptor selectivity and stereoselective affinity results. The data from these studies indicate that the 5-SAT chemotype, previously shown to be safe and efficacious in rodent paradigms of neurodevelopmental and neuropsychiatric disorders, is amenable to structural modification to optimize affinity at serotonin 5-HT7 vs. 5-HT1A GPCRs, as may be required for successful clinical translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号