首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

2.
Hou Y  Ye RD  Browning DD 《Cellular signalling》2004,16(9):1061-1069
Cyclic-GMP-dependent protein kinase (PKG) is widely appreciated as having diverse roles in a variety of cell types. Many reports have indicated that PKG might regulate cell function by activating members of the mitogen-activated protein kinase (MAPK) family of signaling proteins. In this study, stimulation of HEK-293 cells with nitric oxide (NO) was found to induce a rapid accumulation of phosphorylated p38 MAPK. The involvement of PKG in this process was confirmed by cotransfection of a dominant negative PKG construct (G1alphaR-GFP), which was able to block cGMP-induced p38 MAPK activation. Transfection of cells to express dominant negative Rac1(T17N) was also able to dose-dependently block cGMP-stimulated activation of p38 MAPK, thus indicating the importance of this pathway downstream of PKG. GST-PDB affinity-precipitation experiments revealed that stimulation of HEK293 cells with either nitric oxide or 8-Br-cGMP resulted in a rapid and transient activation of Rac1 with similar kinetics to p38 MAPK phosphorylation. Moreover, using in vitro kinase assays it was found that cGMP also stimulated the activity of the Rac1 effector Pak1. The activation of both Rac1 and Pak1 by 8-Br-cGMP was completely abolished by transfection of the cells with G1alphaR-GFP. Expression of the Rac1(T17N) mutant inhibited PKG-dependent activation of PAK1 indicating that Rac1 functions upstream of PAK1 in this pathway. Immunofluorescence experiments demonstrated clear colocalization of PKG and Rac1 in membrane ruffles and dynamic membrane regions supporting a functional interaction. However, in vitro kinase assays demonstrated that Rac1 is not a substrate for PKG suggesting an indirect activation mechanism. Taken together these data demonstrate a novel PKG-dependent pathway by which the Rac1/Pak1 pathway is activated. Furthermore, we demonstrate that this pathway is central to the activation of p38 MAPK by PKG in these cells.  相似文献   

3.
4.
Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-DeltaN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-DeltaN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.  相似文献   

5.
Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3′,5′-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1, and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.  相似文献   

6.
The soluble form of guanylyl cyclase (sGC) plays a pivotal role in the transduction of inter- and intracellular signals conveyed by nitric oxide. Here, a feedback inhibitory mechanism triggered by cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) activation is described. Preincubation of chromaffin cells with C-type natriuretic peptide, which increased cGMP levels and activated PKG, or with cGMP-permeant analogue (which also activates PKG), in the presence of a broad-spectrum phosphodiesterase inhibitor, resulted in a decrease in subsequent sodium nitroprusside (SNP)-dependent cGMP elevations. This inhibitory effect was mimicked by activating a protein phosphatase and counteracted by the selective PKG inhibitor KT-5823 and by different protein phosphatase inhibitors. Immunoprecipitation of sGC from cells submitted to different treatments followed by immunodetection with antiphosphoserine antibodies (clone 4A9) showed changes in phosphorylation levels of the beta subunit of sGC, and these changes correlated well with differences in SNP-elicited cGMP accumulations. Pretreatment of cells with several PKG inhibitors or protein phosphatase inhibitors produced an enhancement of SNP-stimulated cGMP rises without changing the SNP concentration required to produce half-maximal or maximal responses. Taken together, these results indicate that the catalytic activity of sGC is closely coupled to the phosphorylation state of its beta subunit and that the tonic activity of PKG or its stimulation regulates sGC activity through dephosphorylation of the beta subunit.  相似文献   

7.
Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.  相似文献   

8.
This investigation used a patch clamp technique to test the hypothesis that protein kinase G (PKG) contributes to the phosphorylation and activation of ATP-sensitive K(+) (K(ATP)) channels in rabbit ventricular myocytes. Nitric oxide donors and PKG activators facilitated pinacidil-induced K(ATP) channel activities in a concentration-dependent manner, and a selective PKG inhibitor abrogated these effects. In contrast, neither a selective protein kinase A (PKA) activator nor inhibitor had any effect on K(ATP) channels at concentrations up to 100 and 10 microm, respectively. Exogenous PKG, in the presence of both cGMP and ATP, increased channel activity, while the catalytic subunit of PKA had no effect. PKG activity was prevented by heat inactivation, replacing ATP with adenosine 5'-O-(thiotriphosphate) (a nonhydrolyzable analog of ATP), removing Mg(2+) from the internal solution, applying a PKG inhibitor, or by adding exogenous protein phosphatase 2A. The effects of cGMP analogs and PKG were observed under conditions in which PKA was repressed by a selective PKA inhibitor. The results suggest that K(ATP) channels are regulated by a PKG-signaling pathway that acts via PKG-dependent phosphorylation. This mechanism may, at least in part, contribute to a signaling pathway that induces ischemic preconditioning in rabbit ventricular myocytes.  相似文献   

9.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs.  相似文献   

10.
In a variety of systemic blood vessels, protein kinase G (PKG) plays a critical role in mediating relaxation induced by agents that elevate cGMP, such as nitric oxide. The role of PKG in nitric oxide- and cGMP-induced relaxation is less certain in the pulmonary circulation. In the present study, we examined the effects of inhibitors of PKG on the responses of isolated fourth-generation pulmonary veins of newborn lambs (10 +/- 1 days of age) to nitric oxide and cGMP. In vessels preconstricted with endothelin-1, nitric oxide and 8-bromo-cGMP (a cell-membrane-permeable cGMP analog) induced concentration-dependent relaxation. The relaxation was significantly attenuated by beta-phenyl-1, N(2)-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (Rp-8-Br-PET-cGMPS; a PKG inhibitor) and N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide [H-8; an inhibitor of PKG and protein kinase A (PKA)] but was not affected by KT-5720 (a PKA inhibitor). Biochemical study showed that PKG activity in newborn ovine pulmonary veins was inhibited by 8-Br-PET-cGMPS and H-8 but not by KT-5720. PKA activity was not affected by 8-Br-PET-cGMPS but was inhibited by H-8 and KT-5720. These results suggest that PKG is involved in relaxation of pulmonary veins of newborn lambs induced by nitric oxide and cGMP.  相似文献   

11.
It is generally well accepted that nitrovasodilator-induced relaxation of vascular smooth muscle involves elevation of cGMP and activation of a specific cGMP-dependent protein kinase [protein kinase G (PKG)]. However, the protein targets of PKG and the underlying mechanisms by which this kinase leads to a relaxant response have not been elucidated. Several types of smooth muscle, including rat myometrium and vas deferens, are not relaxed by sodium nitroprusside, even at concentrations that produce marked elevation of cGMP and activation of PKG. The main objective of our studies was to compare PKG-mediated protein phosphorylation in intact rat aorta, rat myometrium, and rat vas deferens using two-dimensional gel electrophoresis. In intact rat aorta, seven PKG substrates were detected during relaxation of the tissue. None of the PKG substrates identified in the rat aorta appeared to be phosphorylated in the myometrium or vas deferens after administration of various cGMP-elevating agents. Thus the failure of the rat myometrium and rat vas deferens to relax in the face of cGMP elevation and PKG activation may be due to a lack of PKG substrate phosphorylation.  相似文献   

12.
Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricted with endothelin-1, to increasing concentrations of 8-bromo-cGMP (8-BrcGMP) or 8-BrcAMP (cell-permeable analogs), in the presence or absence of Rp-8-beta-phenyl-1,N(2)-etheno-bromoguanosine cyclic monosphordthioate (Rp-8-PET-BrcGMPS) or KT-5720, selective inhibitors of PKG and PKA, respectively. When examined for specificity, Rp-8-Br-PET-cGMPS abolished PKG, but not PKA, activity in pulmonary arterial extracts, whereas KT-5720 inhibited PKA activity only. 8-BrcGMP-induced relaxation was inhibited by the PKG inhibitor only, whereas 8-BrcAMP-induced relaxation was inhibited by both inhibitors. A nearly fourfold higher concentration of cAMP than cGMP was required to relax arteries by 50% and to activate PKG by 50%. Our results demonstrate that relaxation of pulmonary arteries is more sensitive to cGMP than cAMP and that PKG plays an important role in both cGMP- and cAMP-mediated relaxation.  相似文献   

13.
Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia–reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.  相似文献   

14.
The role of protein kinase, in particular cyclic GMP-dependent protein kinase (PKG), in the control of chemotaxis was studied in Tetrahymena thermophila using the membrane-permeable cGMP analogue 8-bromo-cGMP and the NO-generator sodium nitroprusside (SNP) that stimulates cGMP production by activating guanylate cyclase. Stimulation of chemoattraction was observed in the presence of 8-bromo-cGMP and nitroprusside when used in 10–100 μM concentrations in vivo. In vitro stimulation of ciliary membrane PKG activity was observed when using similar concentrations of cGMP or 8-bromo-cGMP to those in the in vivo experiments. In contrast, the protein kinase flavonol inhibitors quercitin and kaempherol block chemoattraction and reduce ciliary membrane PGK activity in vitro. For the inhibition of PKG, the IC-50 s for quercitin and kaempherol are 22 and 19 μM, respectively. The results suggest a modulating function of PKG on adaptory processes in cilia-mediated chemotaxis.

The ciliary membrane-associated PKG was partially characterized. Without added external protein kinase substrate in vitro, an endogenous ciliary membrane kinase activity showed phosphorylation of 55 and 97 kDa Triton-X-100 soluble proteins when analyzed by SDS-PAGE under reducing conditions and with 32P-γ-ATP as phosphorylation donor. Phosphoamino acid analysis of PKG-phosphorylated proteins showed 32P-phosphate labeling of serine and threonine residues. Ciliary membrane-associated PKG was further purified by carboxy-methyl-sephadex-column chromatography. The membrane enzyme was Mg2++-dependent and had a pH optimum at 6.4. The carboxy-methyl-sephadex-eluted PKG was analyzed by electrophoresis on sodium dodecyl sulphate polyacrylamide gels showing a molecular weight of 70–75 kDa.  相似文献   


15.
To date, relative cellular levels of cGMP and cGMP-binding proteins have not been considered important in the regulation of smooth muscle or any other tissue. In rabbit penile corpus cavernosum, intracellular cGMP was determined to be 18 +/- 4 nM, whereas the cGMP-binding sites of types Ialpha and Ibeta cGMP-dependent protein kinase (PKG) and cGMP-binding cGMP-specific phosphodiesterase (PDE5) were 58 +/- 14 nM and 188 +/- 6 nM, respectively, as estimated by two different methods for each protein. Thus, total cGMP-binding sites (246 nM) greatly exceed total cGMP. Given this excess of cGMP-binding sites and the high affinities of PKG and PDE5 for cGMP, it is likely that a large portion of intracellular cGMP is associated with these proteins, which could provide a dynamic reservoir for cGMP. Phosphorylation of PDE5 by PKG is known to increase the affinity of PDE5 allosteric sites for cGMP, suggesting the potential for regulation of a reservoir of cGMP bound to this protein. Enhanced binding of cGMP by phosphorylated PDE5 could reduce the amount of cGMP available for activation of PKG, contributing to feedback inhibition of smooth muscle relaxation or other processes. This introduces a new concept for cyclic nucleotide signaling.  相似文献   

16.
Nitric oxide-mediated nociception has been suggested to involve formation of cyclic guanosine 5'-monophosphate (cGMP) and activation of cGMP-dependent protein kinase (PKG). To further evaluate this pathway we assessed the effects of the PKG-inhibiting cGMP analog Rp-8-Br-cGMPS in the rat formalin assay and analyzed the regulation of PKG expression in rat lumbar spinal cord. Spinally delivered Rp-8-Br-cGMPS (0.1-0.5 micro mol i.t.) reduced the nociceptive behavior in a dose-dependent manner. Similar effects were achieved with Rp-8-Br-PET-cGMPS (0.5 micro mol i.t.), another PKG-inhibitory cGMP analog. In contrast, Rp-8-Br-cAMPS (0.5 micro mol i.t.), an inhibitor of protein kinase A, had no effect in this model. Formalin treatment resulted in a rapid (within 1h), long-lasting (up to 96h) upregulation of PKG-I protein expression. This increase was prevented in animals pretreated with Rp-8-Br-cGMPS (0.5 micro mol i.t.) or morphine (2.5-5mg/kg i.p.) 10min prior to formalin injection. Spinal delivery of 8-Br-cGMP, a PKG-activating cGMP analog, without subsequent formalin treatment also caused an increase of PKG-I protein expression. Hence, the upregulation of PKG-I might possibly be mediated by cGMP itself. Our data suggest that PKG-I activation is involved in the synaptic transmission of nociceptive stimuli in the spinal cord and that PKG-I inhibitors might be interesting novel drugs for pain treatment.  相似文献   

17.
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.  相似文献   

18.
The present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5-50 microM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2'-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway.  相似文献   

19.
Heat-stable enterotoxin (STa) stimulates intestinal Cl(-) secretion by activating guanylate cyclase C (GCC) to increase intracellular cyclic GMP (cGMP). In the colon, cGMP action could involve protein kinase (PK) G-II or PKA pathways, depending on the segment and species. In the human colon, both PKG and PKA pathways have been implicated, and, therefore, the present study examined the mechanism of cGMP-mediated Cl(-) transport in primary cultures of human distal colonocytes and in T84, the colonic cell line. Both cell preparations express mRNA for CFTR, Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), GCC and PKG-II as detected by RT-PCR. The effects of STa and the PKG-specific cGMP analogues, 8Br-cGMP and 8pCPT-cGMP, on Cl(-) transport were measured using a halide-sensitive probe. In primary human colonocytes and T84 cells, STa, the cGMP analogues and the cAMP-dependent secretagogue, prostaglandin E(1) (PGE(1)), enhanced Cl(-) transport. The effects of 8Br-cGMP and 8pCPT-cGMP suggested the involvement of PKG, and this was explored further in T84 cells. The effects of 8pCPT-cGMP were dose-dependent and sensitive to the PKG inhibitor, H8 (70 microM), but H8 had no effect on PGE(1)-induced Cl(-) secretion. In contrast, a PKA inhibitor, H7 (50 microM), blocked PGE(1)-mediated but not 8pCPT-cGMP-induced Cl(-) transport. 8pCPT-cGMP enhanced phosphorylation of the PKG-specific substrate, 2A3, by T84 membranes in vitro. This phosphorylation was inhibited by H8. These results strongly suggest that cGMP activates Cl(-) transport through a PKG-II pathway in primary cells and in the T84 cell line of the human colon.  相似文献   

20.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号