首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sigma-receptor, a distinct binding site in brain tissue that may mediate some of the psychotomimetic properties of benzomorphan opiates and phencyclidine, has been solubilized using the ionic detergent sodium cholate. Binding assays were performed with the solubilized receptor using vacuum filtration over polyethyleneimine-treated glass fiber filters. The pharmacological specificity of the solubilized binding site for sigma-receptor ligands is nearly identical to the membrane-bound form of the receptor, with the order of potencies for displacement of the selective sigma-ligand [3H]di-o-tolylguanidine ([3H]DTG) closely correlated. The stereoselectivity for (+)-benzomorphan opiate enantiomers was retained by the solubilized receptor. The soluble receptor retained high affinity for binding of [3H]DTG (KD = 28 +/- 0.5 nM) and (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-[3H]3-PPP] (KD = 36 +/- 2 nM). Photoaffinity labeling of the solubilized receptor by [3H]p-azido-DTG, a sigma-selective photoaffinity label, resulted in labeling of a 29-kilodalton polypeptide identical in size to that labeled in intact membranes. Estimation of the Stokes radius of the [3H]DTG binding site was obtained by Sepharose CL-6B chromatography in the presence of 20 mM cholate and calculated to be 8.7 nm. This value was identical to the molecular size found for the binding sites of the sigma-selective ligands (+)-[3H]3-PPP and (+)-[3H]SKF-10,047, supporting the hypothesis that all three ligands bind to the same macromolecular complex.  相似文献   

2.
Sigma-receptors are nonopioid, nondopaminergic receptors that bind with high affinity several antipsychotic drugs and appear to be involved in regulation of posture and movement. The second messenger system coupled to these receptors is still unknown. Recently, an inhibitory effect of various sigma-compounds on carbachol-stimulated phosphoinositide metabolism has been reported. We have investigated the effect of six sigma-compounds on carbachol- and norepinephrine-stimulated 3H-inositol phosphate accumulation in rat cerebral cortex slices. All compounds tested had a dose-dependent inhibitory effect on both systems, although their order of potency differed between neurotransmitters. Pentazocine and 1,3-di-o-tolylguanidine were the most potent inhibitors of carbachol-stimulated phosphoinositide turnover (IC50 = 31.5 and 45.7 microM, respectively), while haloperidol showed the greatest potency on the norepinephrine-coupled system (IC50 = 3.5 microM). In the presence of IC50 concentrations of these inhibitors, the dose-response curves for the agonists were shifted to the right and the EC50 values were significantly increased. Sigma-compounds also inhibited the binding of [3H]quinuclidinyl benzilate to muscarinic receptors and of [3H]prazosin to alpha 1-adrenoceptors in cortical membranes. In the presence of IC50 concentration (11 microM) of 1,3-di-o-tolylguanidine, no differences were found in the maximal number of muscarinic binding sites, whereas the dissociation constant increased approximately fivefold, indicating a decrease of the radioligand's affinity for the receptor. These results indicate that sigma-compounds, at micromolar concentrations, inhibit muscarinic and alpha 1-adrenergic receptor-coupled phosphoinositide metabolism, probably through an interaction with the neurotransmitter recognition sites.  相似文献   

3.
Abstract: Autoradiographic studies have shown that σ receptors are enriched in the locus coeruleus, the origin of noradrenergic projections to the cerebellum, as well as in the Purkinje, molecular, and granular layers and the interpositus cerebellar nucleus of the cerebellum itself. In contrast, the cerebellum is relatively poor in phencyclidine (PCP) binding sites, which have been historically confused with σ sites. The high ratio of σ to PCP receptors in cerebellum is advantageous for discriminating σ-mediated physiological effects. σ agonists and antagonists have been shown to regulate N -methyl- d -aspartate (NMDA)-stimulated norepinephrine release in hippocampus, which is innervated by locus coeruleus projections. We now report that σ drugs also regulate norepinephrine release from cerebellum. In contrast to findings in the hippocampus, where regulation is via σ1 and σ2 receptors, σ-mediated regulation in cerebellum seems to be primarily via σ1 receptors. In radioligand binding studies, we find that σ receptors primarily of the σ1 type are present in the cerebellum. We further report that binding to σ receptors in cerebellum is not affected by the addition of NMDA or glycine or by the presence of NMDA antagonists, suggesting that σ receptors are not located within the NMDA-operated cation channel in this brain region.  相似文献   

4.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

5.
6.
Abstract: Because σ receptors are richly concentrated in the rat pineal gland, the present study was performed to investigate their possible role in the modulation of melatonin production. To this purpose, we assessed in vivo the effects of the σ-receptor ligands 1,3-di(2-tolyl)guanidine and (+)- N -allylnormetazocine on the rat pineal gland activity during either the daytime or the nighttime. Compared with vehicle, 1,3-di(2-tolyl)guanidine and (+)- N -allylnormetazocine potentiated the enhancement of N -acetyltransferase activity and pineal melatonin content induced by isoproterenol administration during the daytime, whereas they did not affect the diurnal basal biosynthetic activity of the gland. Conversely, at night, 1,3-di(2-tolyl)guanidine and (+)- N -allylnormetazocine enhanced significantly the physiological increases in both pineal N -acetyltransferase activity and melatonin levels. This enhancement was prevented by pretreatment with rimcazole, a specific σ-receptor antagonist. These findings suggest that, in rats, the activation of pineal σ-receptor sites does not affect the biosynthetic activity of the pineal gland during daytime, whereas it pontentiates the production of melatonin when the gland is noradrenergically stimulated either by isoproterenol administration or by the endogenously released norepinephrine at nighttime.  相似文献   

7.
Abstract: Mouse N18TG2 neuroblastoma and rat C6 glioma cell lines were injected into male nude mice, and the tumors were passaged serially. At each generation, tumors were analyzed for δ opioid binding using [3H][ d -Ala2, d -Leu5]enkephalin and for σ1 and σ2 binding with 1,3-[3H]di- o -tolylguanidine in the presence and absence of 1 µ M pentazocine. Receptor density ( B max) and affinity ( K D) were estimated by homologous competition binding assays. Opioid and σ B max values in the solid tumors were significantly lower than their original levels in vitro. K D values for opioid/σ ligands were similar in vitro and in vivo. With successive passages in the murine host, δ opioid and σ1 binding of the neuroblastoma-derived solid tumors became undetectable. In contrast, σ2 receptor B max values were unchanged with successive passages of the neuroblastoma-derived tumors and doubled in the nude mouse-borne gliomas. When neuroblastoma-derived solid tumors that were devoid of δ opioid binding were returned to culture, opioid receptors appeared to be up-regulated as compared with their original in vitro levels. Serial passaging of these recultured cells in vivo again resulted in a rapid decline in opioid receptor content. The opioid data are consistent with our prior findings on opioid binding diminution in human brain tumors. The pattern of change for σ binding was more complex, with the σ2 response in late passages of the glioma being reminiscent of the formerly observed increase in number of σ sites in transformed human meninges, kidney, and colon tissue.  相似文献   

8.
9.
10.
Abstract: A cDNA clone (S2-1a) isolated from a mouse brain cDNA library, using a guinea pig σ1 cDNA as probe, has high homology to the predicted protein sequence of the guinea pig (88%) and human (90%) σ1 receptors. Northern analysis revealed a major mRNA of ∼1.8 kb in a wide range of mouse tissues, with highest levels in brain, liver, kidney, and thymus. Southern analysis and chromosomal mapping in the mouse suggested a single-copy gene in region A5-B2 of chromosome 4. Expression of the clone in MCF-7 and CHO cells led to a pronounced increase in (+)-[3H]pentazocine binding with a selectivity profile consistent with σ1 receptors. In vitro translation yielded a protein of ∼28 kDa, as did transfection of a probe containing the hemagglutinin (HA) epitope (S2-1a.HA) into CHO cells, as determined by western analysis using an antibody directed against HA. (+)-[3H]-Pentazocine binding to immunopurified HA-tagged receptor demonstrated conclusively that S2-1a.HA encodes a high-affinity (+)-[3H]pentazocine binding site with characteristics of a murine σ1 receptor. An antisense oligodeoxynucleotide designed from S2-1a potentiated opioid analgesia in vivo.  相似文献   

11.
Abstract: σ receptors have been identified in many brain areas and are especially abundant in those regions known to be involved in control of movement. σ receptors have been located autoradiographically in the granule cell layer of cerebellum in adult rat brain. In the current study, we identified σ receptors in rat neonatal granule cells in culture using radioligand binding. The tritium labeled form of the putative σ antagonist haloperidol bound with high affinity to membranes prepared from these cells, and ligands selective for σ receptors competed well against [3H]haloperidol binding. The excitatory amino acid N -methyl- d -aspartate and the direct phospholipase A2 activator melittin stimulated the release of [3H]arachidonic acid from cerebellar granule cells. The N -methyl- d -aspartate-stimulated, but not the melittin-stimulated, release was inhibited in a concentration-dependent manner by the σ-selective agonist (+)-pentazocine. In addition, the novel σ1 agonist BD737 inhibited N -methyl- d -aspartate-stimulated release. Pentazocine inhibition was almost completely reversed by the σ antagonists NPC-16377 and opipramol. A 1 µ M concentration of the phencyclidine receptor-selective ligand MK-801 inhibited ∼65% of N -methyl- d -aspartate-stimulated release. These results suggest that σ receptors may play a role in modulating arachidonic acid release in cerebellar granule cells.  相似文献   

12.
Discrete Distributions of Adenosine Receptors in Mammalian Retina   总被引:1,自引:6,他引:1  
Binding sites for both the adenosine A1 receptor agonists [3H]phenylisopropyladenosine and [3H]cyclohexyladenosine and the mixed A1-A2 agonist N-[3H]ethylcarboxamidoadenosine [( 3H]NECA) were localized in rabbit and mouse retinas using autoradiographic techniques. These two classes of agonists bound to very different regions of mammalian retinas. A1 agonist binding was localized to the inner retina, particularly over the inner plexiform layer. The binding of [3H]NECA was observed primarily over the retinal pigmented epithelium and the outer and inner segments of photoreceptors. [3H]NECA labeling was not affected either by including a low concentration of unlabeled A1 agonist or by pretreating tissue with N-ethylmaleimide to inhibit ligand binding at A1 sites. While virtually all of the [3H]NECA binding was displaced by an excess of unlabeled NECA, displacement with antagonist or a large excess of cyclohexyladenosine revealed that approximately 30% of the [3H]NECA binding was at non-A1,A2 sites. The majority of the binding in the outer retina thus labeled A2 receptor sites. The unique localizations of the two classes of adenosine receptors suggest different functions in visual processing.  相似文献   

13.
14.
15.
16.
Abstract: To determine whether prolonged exposure to nicotine differentially affects α3β2 versus α4β2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 µ M nicotine for α4β2 and α3β2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of α4β2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 n M range following incubation for 24 h and in the 1 n M range following incubation for 48 h. In contrast, responses of α3β2 receptors following incubation for 24–48 h with 1,000 n M nicotine decreased by only 50–60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for α4β2 and α3β2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for α4β2 and α3β2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but α4β2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.  相似文献   

17.
18.
beta-N-Oxalylamino-L-alanine (L-BOAA) is a non-protein excitatory amino acid present in the seed of Lathyrus sativus L. This excitotoxin has been characterized as the causative agent of human neurolathyrism, an upper motor neuron disease producing corticospinal dysfunction from excessive consumption of the lathyrus pea. Previous behavioral, tissue-culture, and in vitro receptor binding investigations revealed that L-BOAA might mediate acute neurotoxicity through quisqualate (QA)-preferring glutamate receptors. The present study demonstrates the stereospecific action of L-BOAA on glutamate receptor binding in whole mouse brain synaptic membranes. L-BOAA was most active in displacing thiocyanate (KSCN)-sensitive specific tritiated (RS)-alpha-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding (i.e., QA receptor) (Ki = 0.76 microM) with a rank-order potency of QA greater than kainate greater than N-methyl-D-aspartate (NMDA). By contrast, the nonneurotoxic D-BOAA isomer (100 microM) was essentially inactive in displacing radioligands for glutamate receptors, except the NMDA site, where it was equipotent with L-BOAA. Scatchard analysis of L-BOAA displacement of specific [3H]AMPA binding indicated competitive antagonism (KD: control, 135 nM; L-BOAA, 265 nM) without a significant change in QA-receptor density, and Hill plots yielded coefficients approaching unity. Differential L-BOAA concentration-dependent decreases in specific [3H]AMPA binding were observed in synaptic membranes, indicating that the neurotoxin was more potent in displacing specific binding from frontal cortex membranes, followed by that for corpus striatum, hippocampus, cerebellum, and spinal cord. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.  相似文献   

20.
Avermectin B1a stimulates high-affinity binding of [3H]-gamma-aminobutyric acid (GABA) to receptors in washed rat brain membranes. Scatchard analysis of the data indicates that the drug does not significantly alter the apparent dissociation constant of GABA binding, but increases the detectable number of binding sites from 3.2 to 5.1 pmol/mg protein, (+)-Bicuculline completely blocks control and avermectin B1a-stimulated GABA binding, whereas picrotoxin antagonizes specifically the avermectin B1a-stimulated GABA binding. The avermectin B1a-stimulated GABA binding is also chloride ion-dependent, whereas GABA binding in the control is not. These observations suggest that the mechanism of avermectin B1a stimulation of GABA binding may involve the chloride ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号