首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30 years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described.  相似文献   

2.
Approximately 80% of breast cancers(BC) are estrogen receptor(ER)-positive and thus endocrine therapy(ET) should be considered complementary to surgery in the majority of patients. The advantages of oophorectomy, adrenalectomy and hypophysectomy in women with advanced BC have been demonstrated many years ago, and currently ET consist of(1) ovarian function suppression(OFS), usually obtained using gonadotropinreleasing hormone agonists(Gn RHa);(2) selective estrogen receptor modulators or down-regulators(SERMs or SERDs); and(3) aromatase inhibitors(AIs), or a combination of two or more drugs. For patients aged less than 50 years and ER+ BC, there is no conclusive evidence that the combination of OFS and SERMs(i.e., tamoxifen) or chemotherapy is superior to OFS alone. Tamoxifen users exhibit a reduced risk of BC, both invasive and in situ, especially during the first 5 years of therapy, and extending the treatment to 10 years further reduced the risk of recurrences. SERDs(i.e., fulvestrant) are especially useful in the neoadjuvant treatment of advanced BC, alone or in combination with either cytotoxic agents or AIs. There are two types of AIs: type Ⅰ are permanent steroidal inhibitors of aromatase, while type Ⅱ are reversible nonsteroidal inhibitors. Several studies demonstrated the superiority of the third-generation AIs(i.e., anastrozole and letrozole) compared with tamoxifen, and adjuvant therapy with AIs reduces the recurrence risk especially in patients with advanced BC. Unfortunately, some cancers are or became ET-resistant, and thus other drugs have been suggested in combination with SERMs or AIs, including cyclin-dependent kinase 4/6 inhibitors(palbociclib) and mammalian target of rapamycin(m TOR) inhibitors, such as everolimus. Further studies are required to confirm their real usefulness.  相似文献   

3.
Banerjee S 《Steroids》2011,76(8):807-811
Despite effective treatments for oestrogen receptor-positive breast cancers, drug resistance is common and remains a significant clinical challenge. Targeting tumour vasculature by blockade of the vascular endothelial growth factor (VEGF) has proved successful in a variety of cancers. Phase III clinical trials of bevacizumab in combination with chemotherapy showed some efficacy in breast cancer. Concomitant targeting of the VEGF and oestrogen signalling pathways has the potential to provide enhanced therapeutic benefit in oestrogen receptor-positive breast cancer, and this strategy is under evaluation in clinical trials. This article summarises the rationale for this approach and clinical studies so far.  相似文献   

4.
A common problem in breast cancer therapy is resistance to the antiestrogen tamoxifen. However, tamoxifen-resistant breast tumors can still respond to other hormonal therapies. In animal models of tamoxifen-resistant breast cancer cells, physiological levels of estrogen can induce tumor regression. Recently, the estrogen receptor downregulator fulvestrant was shown to promote tumor growth of tamoxifen-resistant cells when added in combination with physiological levels of estrogen. Here, we show, using a cell culture model, that continuous exposure of tamoxifen-resistant cells to physiological levels of estrogen leads to cell death. Addition of the estrogen receptor downregulator fulvestrant prevents estrogen-induced death in a dose-dependent manner. Our data indicate that endogenous levels of estrogen affect the response of tamoxifen-resistant cells to fulvestrant. These results suggest that failure of fulvestrant to inhibit tumor growth in some tamoxifen-resistant patients may be due to endogenous estrogen levels. Moreover, these studies support short-term treatment with estrogen as a second-line hormonal therapy for tamoxifen-resistant breast cancer.  相似文献   

5.
We designed and synthesized an estrogen receptor (ER) down-regulator (5), which is a derivative of tamoxifen with a long alkyl side chain. Compound 5 effectively reduced ER protein levels in MCF-7 cells and had an antagonistic effect.  相似文献   

6.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

7.
The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer.  相似文献   

8.
The progression of cancer is associated with tumor's ability to outgrow the existing vasculature resulting in chronic hypoxic pressure, however the molecular mechanism of cancer cell response to chronic hypoxia is poorly understood. In this study we have analyzed the reorganization of estrogen receptor (ER) signaling in breast cancer cells under chronic hypoxia and examined the role of interrelations between ER and NF-kB signaling in cell adaptation to hypoxia. Using long-term culturing of MCF-7 breast cancer cells in hypoxia-mimetic conditions (cobalt chloride) we have established a hypoxia-tolerant subline characterized by HIF-1 hyperexpression that retained the tolerance to hypoxia even when the cells were returned to normoxic conditions.The hypoxia-tolerant cells were characterized by non-affected ER signaling, irreversible suppression of NF-kB activity, and increased sensitivity to cytokine-induced apoptosis. Estradiol treatment suppressed the NF-kB activity in both parent and hypoxia-tolerant MCF-7 cells. In contrast to MCF-7 cells, the exposure of estrogen-independent MCF-7/T2 subline to chronic hypoxia was not accompanied by noticeable changes in NF-kB activity or cell sensitivity to cytokines. Taken together, the results presented demonstrate the importance of interrelations between ER and NF-kB signaling in the response of estrogen-dependent breast cancer cells to chronic hypoxia.  相似文献   

9.
During neoplastic growth and metastasis, the immune system responds to the tumor by developing both cellular and humoral immune responses. In spite of this active response, tumor cells escape immune surveillance. We previously showed that FasL expression by breast tumor plays a central role in the induction of apoptosis of infiltrating Fas-immune cells providing the mechanism for tumor immune privilege. In the present study, we showed that FasL in breast tissue is functionally active, and estrogen and tamoxifen regulate its expression. We identified an estrogen recognizing element like-motif in the promoter region of the FasL gene, suggesting direct estrogen effects on FasL expression. This was confirmed by an increase in FasL expression in both RNA and protein levels in hormone sensitive breast cancer cells treated with estradiol. This effect is receptor mediated since tamoxifen blocked the estrogenic effect. Interestingly, tamoxifen also inhibited FasL expression in estrogen-depleted conditions. Moreover, an increase in FasL in breast cancer cells induces apoptosis in Fas bearing T cells and, tamoxifen blocks the induction of apoptosis. These studies provide evidence that tamoxifen inhibits FasL expression, allowing the killing of cancer cells by activated lymphocytes. This partially explains the protective effect of tamoxifen against breast cancer.  相似文献   

10.
The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.  相似文献   

11.
The human STYK1/NOK protein is approximately 30–35% similar to mouse fibroblast growth factor receptor 3 and a kinase homologue in D. melanogaster in the tyrosine protein kinase region. STYK1/NOK was identified as being up regulated in MDA-MB-231, an estrogen receptor-alpha negative breast cancer cell line, following 12 h of estrogen treatment at 1 × 10−9 M. On further investigation of STYK1/NOK in estrogen treated cell line MDA-MB-231, STYK1/NOK was up regulated at 6 h post treatment when compared to untreated cells. We also investigated the expression levels of STYK1/NOK in other breast cancer cell lines MCF-7, MDA-MB-231, BT-549, and MDA-MB-435S using QRT-PCR. In addition, the analysis of message accumulation was increased with other synthetic estrogen response modifiers. We propose that the regulation of STYK1/NOK is achieved independent of ERα and suggests further investigation to the relevance of this kinase in breast cancer progression.  相似文献   

12.
The potential role of estrogen in aromatase regulation in the breast   总被引:2,自引:0,他引:2  
Aromatase is expressed in both normal and malignant breast tissues. Aromatase activity in the breast varies over a wide range. Our previous studies have demonstrated that in situ aromatization contributes to the estrogen content of breast tumors to a major extent. Consequently, alterations of aromatase activity could serve as a major determinant of tissue estradiol content. However, the mechanisms and extent of aromatase regulation in breast tissues have not been fully established. We have observed an inverse correlation between tumor aromatase activity and estrogen content in nude mice bearing xenografts of MCF-7 cells transfected with the aromatase gene. To investigate the potential role of estrogen in aromatase regulation in the breast, studies were carried out in an in vitro model. In this model, MCF-7 cells were cultured long term in estrogen-deprived medium and called by the acronym, LTED cells. We found that long-term estrogen deprivation enhanced aromatase activity by 3–4-fold when compared to the wild-type MCF-7 cells. Re-exposure of LTED cells to estrogen reduced aromatase activity to the levels of the wild-type MCF-7 cells. We also measured aromatase activity in 101 frozen breast carcinoma specimens and compared tumor aromatase activities in pre-menopausal patients versus post-menopausal patients and in post-menopausal patients with or without hormone replacement therapy (HRT). Although statistically not significant, there was a trend paralleling that observed in the in vitro studies. Aromatase activity was higher in breast cancer tissues from the patients with lower circulating estrogen levels. Our data suggest that estrogen may be involved in the regulation of aromatase activity in breast tissues.  相似文献   

13.
Tamoxifen is an effective treatment for breast cancer; however, as well as exerting antagonistic effects on the estrogen receptor (ER), tamoxifen acts as a partial agonists in estrogen-sensitive tissues, resulting in stimulation of the endometrium and tumor growth in some patients who become resistant to treatment.

ICI 182, 780 (Faslodex™), a steroidal estrogen antagonist, is the first in a new class of agent—an estrogen receptor downregulator. Pre-clinical breast cancer models show that ICI 182, 780 leads to a prolonged duration of response, and that it exerts its effects via a different mode of action to tamoxifen. This was confirmed in a small clinical study involving 19 post-menopausal advanced breast cancer patients, where ICI 182, 780 was highly effective after tamoxifen failure. Definitive evidence of the differing modes of action of ICI 182, 780 and tamoxifen, were provided in a study involving post-menopausal women with primary breast cancer, where analyses of tumor samples following short-term exposure to both drugs, showed that ICI 182, 780 reduced tumor ER levels in a dose-dependent manner, and to a significantly greater extent than tamoxifen. Additionally, unlike tamoxifen, ICI 182, 780 did not promote ER-mediated progesterone receptor expression, indicating that it lacks estrogen agonist activity.

Ongoing studies in post-menopausal women with advanced breast cancer are comparing ICI 182, 780 to anastrozole and tamoxifen, respectively. Future studies being considered are whether ICI 182, 780 may also be effective in breast cancer in pre-menopausal women, in early breast cancer and in ductal carcinoma in situ in the breast, in combination with other hormonals, cytotoxics and biological modifiers.  相似文献   


14.
Resistance to Tamoxifen constitutes a major therapeutic challenge in treating hormone sensitive breast cancer. The induction of autophagy has been shown to be involved as one of the mechanism responsible for Tamoxifen resistance. Autophagy related gene (ATG) members are the regulators and effectors of Macroautophagy process in the cellular systems. In this study, we evaluated the prognostic significance of ATGs in Tamoxifen treated breast cancer. The "Kaplan- Meier plotter" database was utilized to analyze the relevance and significance of ATGs mRNA expression to Relapse Free Survival in breast cancer patients. We used the data of patients who are Estrogen receptor positive and are treated with Tamoxifen. Hazard ratio and log-rank p-value were calculated using KM survival plots for various ATGs. Overexpressed ATG3, ATG 5, ATG 8B and PIK3R4 resulted in a poor prognosis. A gene signature of these ATGs predicts deteriorated RFS (p-value=8.3e-05 and HR=1.84 (1.35-2.51) and Distant Metastasis Free Survival (p value = 0.0027 and HR=2.03 (1.27-3.26). We report the distinct prognostic values of ATGs in patients of breast cancer treated with Tamoxifen. Thus, better understandings of the induction of autophagy pathway may potentially form the basis for use of autophagy inhibitors in the Tamoxifen treated breast cancer.  相似文献   

15.
Estrogen regulates various cytokines and growth factors in estrogen receptor (ER)-positive human breast cancer. Receptor activator of NF-κB ligand (RANKL) is an essential cytokine for osteoclasts, whereas osteoprotegerin (OPG) is a soluble inhibitor for RANKL. We analyzed the regulation of the RANKL/OPG system by estrogens and androgens in the ER-positive breast cancer cell line MCF-7 and the ER-negative breast cancer cell line MDA-MB-231. In MCF-7 cells, which predominantly express ER-α, 17β-estradiol and testosterone dose-dependently decreased OPG mRNA levels and protein secretion by 70 and 65%, respectively (p < 0.0001 by ANOVA). The inhibition of OPG production by 17β-estradiol and testosterone was specifically prevented by the pure anti-estrogen ICI 182,780, and the testosterone effect was prevented by an aromatase inhibitor. In conclusion, 17β-estradiol suppressed OPG production by human breast cancer cell lines in a dose-dependent and specific manner, indicating that the RANKL/OPG cytokine system is an estrogen-responsive target in breast cancer.  相似文献   

16.
17.
Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor. These SERDs induced tumor regression in a tamoxifen-resistant breast cancer xenograft, demonstrating that the indazole NH is not necessary for robust ER-modulation and anti-tumor activity.  相似文献   

18.
Considerable heterogeneity exists amongst oestrogen receptor positive (ER+ve) breast cancer in both its molecular profile and response to therapy. Attempts to better define variation amongst breast tumours have led to the definition of four main “intrinsic” subtypes of breast cancer with two of these classes, Luminal A and B, composed almost entirely of ER+ve cancers. In this study we set out to investigate the significance of intrinsic subtypes within a group of ER+ve breast cancers treated with neoadjuvant anastrozole. RNA from tumour biopsies taken from 104 postmenopausal women before and after 2 weeks treatment with anastrozole was analyzed on Illumina 48K microarrays. Gene-expression based subtypes and risk of relapse (ROR) scores for tumours pre- and post-treatment were determined using the PAM50 method. Amongst pre-treatment samples, all intrinsic subtypes were found to be present, although luminal groups were represented most highly. Luminal A and B tumours obtained similar benefit from treatment, as measured by the proportional fall in the proliferation marker Ki67 upon treatment (mean suppression = 75.5% vs 75.7%). Tumours classified as basal and Her2-like showed poor reductions in Ki67 upon treatment. Residual Ki67 staining after two weeks remained higher in the Luminal B group. ROR score was significantly associated with anti-proliferative response to AI and with clinical response. These results suggest that in the short-term, Luminal A and B tumours may gain similar benefit from an AI but that the higher residual Ki67 level seen in Luminal B is indicative of poorer long term outcome.  相似文献   

19.
Breast cancer is one of the most common forms of cancer observed in women. Endogenous estrogen is thought to play a major role in its development and estrogen receptor blockers are the most important drugs in its treatment. It has long been thought that any conditions or exposures, which enhance estrogenic responses, would result in an increased risk for breast cancer. The discovery of the second estrogen receptor, ERβ, which can have effects opposite to those of the well-known ‘original’ estrogen receptor (now called ER) challenges this simplistic view. In order to understand breast cancer one must first understand how the normal breast is maintained. The functions of ERβ in the breast remain to be defined but from what we have learnt about its activities in in vitro systems, this estrogen receptor may have a protective role in the breast. Studies in human and rodent breasts as well as in human breast cancer biopsies reveal that ERβ is by far the more abundant of the two ERs. Despite the role of estrogen in proliferation of the breast, neither of the two ERs appears to located in epithelial cells which divide in response to estrogen. In order to define the functions of ERβ in the normal and malignant breast, we have created mice in which the ERβ gene has been inactivated. Studies of the breasts of ERβ knock out mice (BERKO) revealed abnormal epithelial growth, overexpression of Ki67 and severe cystic breast disease as mice age.  相似文献   

20.
Clinical management of breast cancer is increasingly guided by assessment of tumor phenotypic parameters. One of these is estrogen receptor (ER) status, currently defined by ERalpha expression. However with the discovery of a second ER, ERbeta and its variant isoforms, the definition of ER status is potentially more complex. In breast tumors there are two ERbeta expression cohorts. One where ERbeta is co-expressed with ERalpha and the other expressing ERbeta alone. In the latter subgroup of currently defined ER negative patients ERbeta has the potential to be a therapeutic target. Characterization of the nature and role of ERbeta in ERalpha negative tumors is essentially unexplored but available data suggest that the role of ERbeta may be different when co-expressed with ERalpha and when expressed alone. This review summarizes available data and explores the possibility that ERbeta signaling may be a therapeutic target in these tumors. Evidence so far supports the idea that the role of ERbeta in breast cancer is different in ERalpha negative compared to ERalpha positive tumors. However, cohort size and numbers of independent studies are small to date, and more studies are needed with better standardization of antibodies and protocols. Also, the ability to determine the role of ERbeta in ERalpha negative breast cancer and therefore assess ERbeta signaling pathways as therapeutic targets would be greatly facilitated by identification of specific downstream markers of ERbeta activity in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号