共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite effective treatments for oestrogen receptor-positive breast cancers, drug resistance is common and remains a significant clinical challenge. Targeting tumour vasculature by blockade of the vascular endothelial growth factor (VEGF) has proved successful in a variety of cancers. Phase III clinical trials of bevacizumab in combination with chemotherapy showed some efficacy in breast cancer. Concomitant targeting of the VEGF and oestrogen signalling pathways has the potential to provide enhanced therapeutic benefit in oestrogen receptor-positive breast cancer, and this strategy is under evaluation in clinical trials. This article summarises the rationale for this approach and clinical studies so far. 相似文献
2.
A common problem in breast cancer therapy is resistance to the antiestrogen tamoxifen. However, tamoxifen-resistant breast tumors can still respond to other hormonal therapies. In animal models of tamoxifen-resistant breast cancer cells, physiological levels of estrogen can induce tumor regression. Recently, the estrogen receptor downregulator fulvestrant was shown to promote tumor growth of tamoxifen-resistant cells when added in combination with physiological levels of estrogen. Here, we show, using a cell culture model, that continuous exposure of tamoxifen-resistant cells to physiological levels of estrogen leads to cell death. Addition of the estrogen receptor downregulator fulvestrant prevents estrogen-induced death in a dose-dependent manner. Our data indicate that endogenous levels of estrogen affect the response of tamoxifen-resistant cells to fulvestrant. These results suggest that failure of fulvestrant to inhibit tumor growth in some tamoxifen-resistant patients may be due to endogenous estrogen levels. Moreover, these studies support short-term treatment with estrogen as a second-line hormonal therapy for tamoxifen-resistant breast cancer. 相似文献
3.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα +) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells. 相似文献
4.
The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer. 相似文献
5.
The progression of cancer is associated with tumor's ability to outgrow the existing vasculature resulting in chronic hypoxic pressure, however the molecular mechanism of cancer cell response to chronic hypoxia is poorly understood. In this study we have analyzed the reorganization of estrogen receptor (ER) signaling in breast cancer cells under chronic hypoxia and examined the role of interrelations between ER and NF-kB signaling in cell adaptation to hypoxia. Using long-term culturing of MCF-7 breast cancer cells in hypoxia-mimetic conditions (cobalt chloride) we have established a hypoxia-tolerant subline characterized by HIF-1 hyperexpression that retained the tolerance to hypoxia even when the cells were returned to normoxic conditions.The hypoxia-tolerant cells were characterized by non-affected ER signaling, irreversible suppression of NF-kB activity, and increased sensitivity to cytokine-induced apoptosis. Estradiol treatment suppressed the NF-kB activity in both parent and hypoxia-tolerant MCF-7 cells. In contrast to MCF-7 cells, the exposure of estrogen-independent MCF-7/T2 subline to chronic hypoxia was not accompanied by noticeable changes in NF-kB activity or cell sensitivity to cytokines. Taken together, the results presented demonstrate the importance of interrelations between ER and NF-kB signaling in the response of estrogen-dependent breast cancer cells to chronic hypoxia. 相似文献
6.
During neoplastic growth and metastasis, the immune system responds to the tumor by developing both cellular and humoral immune responses. In spite of this active response, tumor cells escape immune surveillance. We previously showed that FasL expression by breast tumor plays a central role in the induction of apoptosis of infiltrating Fas-immune cells providing the mechanism for tumor immune privilege. In the present study, we showed that FasL in breast tissue is functionally active, and estrogen and tamoxifen regulate its expression. We identified an estrogen recognizing element like-motif in the promoter region of the FasL gene, suggesting direct estrogen effects on FasL expression. This was confirmed by an increase in FasL expression in both RNA and protein levels in hormone sensitive breast cancer cells treated with estradiol. This effect is receptor mediated since tamoxifen blocked the estrogenic effect. Interestingly, tamoxifen also inhibited FasL expression in estrogen-depleted conditions. Moreover, an increase in FasL in breast cancer cells induces apoptosis in Fas bearing T cells and, tamoxifen blocks the induction of apoptosis. These studies provide evidence that tamoxifen inhibits FasL expression, allowing the killing of cancer cells by activated lymphocytes. This partially explains the protective effect of tamoxifen against breast cancer. 相似文献
7.
The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment. 相似文献
8.
The human STYK1/NOK protein is approximately 30–35% similar to mouse fibroblast growth factor receptor 3 and a kinase homologue
in D. melanogaster in the tyrosine protein kinase region. STYK1/NOK was identified as being up regulated in MDA-MB-231, an estrogen receptor-alpha
negative breast cancer cell line, following 12 h of estrogen treatment at 1 × 10 −9 M. On further investigation of STYK1/NOK in estrogen treated cell line MDA-MB-231, STYK1/NOK was up regulated at 6 h post
treatment when compared to untreated cells. We also investigated the expression levels of STYK1/NOK in other breast cancer
cell lines MCF-7, MDA-MB-231, BT-549, and MDA-MB-435S using QRT-PCR. In addition, the analysis of message accumulation was
increased with other synthetic estrogen response modifiers. We propose that the regulation of STYK1/NOK is achieved independent
of ERα and suggests further investigation to the relevance of this kinase in breast cancer progression. 相似文献
9.
Aromatase is expressed in both normal and malignant breast tissues. Aromatase activity in the breast varies over a wide range. Our previous studies have demonstrated that in situ aromatization contributes to the estrogen content of breast tumors to a major extent. Consequently, alterations of aromatase activity could serve as a major determinant of tissue estradiol content. However, the mechanisms and extent of aromatase regulation in breast tissues have not been fully established. We have observed an inverse correlation between tumor aromatase activity and estrogen content in nude mice bearing xenografts of MCF-7 cells transfected with the aromatase gene. To investigate the potential role of estrogen in aromatase regulation in the breast, studies were carried out in an in vitro model. In this model, MCF-7 cells were cultured long term in estrogen-deprived medium and called by the acronym, LTED cells. We found that long-term estrogen deprivation enhanced aromatase activity by 3–4-fold when compared to the wild-type MCF-7 cells. Re-exposure of LTED cells to estrogen reduced aromatase activity to the levels of the wild-type MCF-7 cells. We also measured aromatase activity in 101 frozen breast carcinoma specimens and compared tumor aromatase activities in pre-menopausal patients versus post-menopausal patients and in post-menopausal patients with or without hormone replacement therapy (HRT). Although statistically not significant, there was a trend paralleling that observed in the in vitro studies. Aromatase activity was higher in breast cancer tissues from the patients with lower circulating estrogen levels. Our data suggest that estrogen may be involved in the regulation of aromatase activity in breast tissues. 相似文献
10.
Tamoxifen is an effective treatment for breast cancer; however, as well as exerting antagonistic effects on the estrogen receptor (ER), tamoxifen acts as a partial agonists in estrogen-sensitive tissues, resulting in stimulation of the endometrium and tumor growth in some patients who become resistant to treatment. ICI 182, 780 (Faslodex™), a steroidal estrogen antagonist, is the first in a new class of agent—an estrogen receptor downregulator. Pre-clinical breast cancer models show that ICI 182, 780 leads to a prolonged duration of response, and that it exerts its effects via a different mode of action to tamoxifen. This was confirmed in a small clinical study involving 19 post-menopausal advanced breast cancer patients, where ICI 182, 780 was highly effective after tamoxifen failure. Definitive evidence of the differing modes of action of ICI 182, 780 and tamoxifen, were provided in a study involving post-menopausal women with primary breast cancer, where analyses of tumor samples following short-term exposure to both drugs, showed that ICI 182, 780 reduced tumor ER levels in a dose-dependent manner, and to a significantly greater extent than tamoxifen. Additionally, unlike tamoxifen, ICI 182, 780 did not promote ER-mediated progesterone receptor expression, indicating that it lacks estrogen agonist activity. Ongoing studies in post-menopausal women with advanced breast cancer are comparing ICI 182, 780 to anastrozole and tamoxifen, respectively. Future studies being considered are whether ICI 182, 780 may also be effective in breast cancer in pre-menopausal women, in early breast cancer and in ductal carcinoma in situ in the breast, in combination with other hormonals, cytotoxics and biological modifiers. 相似文献
11.
Estrogen regulates various cytokines and growth factors in estrogen receptor (ER)-positive human breast cancer. Receptor activator of NF-κB ligand (RANKL) is an essential cytokine for osteoclasts, whereas osteoprotegerin (OPG) is a soluble inhibitor for RANKL. We analyzed the regulation of the RANKL/OPG system by estrogens and androgens in the ER-positive breast cancer cell line MCF-7 and the ER-negative breast cancer cell line MDA-MB-231. In MCF-7 cells, which predominantly express ER-α, 17β-estradiol and testosterone dose-dependently decreased OPG mRNA levels and protein secretion by 70 and 65%, respectively ( p < 0.0001 by ANOVA). The inhibition of OPG production by 17β-estradiol and testosterone was specifically prevented by the pure anti-estrogen ICI 182,780, and the testosterone effect was prevented by an aromatase inhibitor. In conclusion, 17β-estradiol suppressed OPG production by human breast cancer cell lines in a dose-dependent and specific manner, indicating that the RANKL/OPG cytokine system is an estrogen-responsive target in breast cancer. 相似文献
12.
Considerable heterogeneity exists amongst oestrogen receptor positive (ER+ve) breast cancer in both its molecular profile and response to therapy. Attempts to better define variation amongst breast tumours have led to the definition of four main “intrinsic” subtypes of breast cancer with two of these classes, Luminal A and B, composed almost entirely of ER+ve cancers. In this study we set out to investigate the significance of intrinsic subtypes within a group of ER+ve breast cancers treated with neoadjuvant anastrozole. RNA from tumour biopsies taken from 104 postmenopausal women before and after 2 weeks treatment with anastrozole was analyzed on Illumina 48K microarrays. Gene-expression based subtypes and risk of relapse (ROR) scores for tumours pre- and post-treatment were determined using the PAM50 method. Amongst pre-treatment samples, all intrinsic subtypes were found to be present, although luminal groups were represented most highly. Luminal A and B tumours obtained similar benefit from treatment, as measured by the proportional fall in the proliferation marker Ki67 upon treatment (mean suppression = 75.5% vs 75.7%). Tumours classified as basal and Her2-like showed poor reductions in Ki67 upon treatment. Residual Ki67 staining after two weeks remained higher in the Luminal B group. ROR score was significantly associated with anti-proliferative response to AI and with clinical response. These results suggest that in the short-term, Luminal A and B tumours may gain similar benefit from an AI but that the higher residual Ki67 level seen in Luminal B is indicative of poorer long term outcome. 相似文献
13.
Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor. These SERDs induced tumor regression in a tamoxifen-resistant breast cancer xenograft, demonstrating that the indazole NH is not necessary for robust ER-modulation and anti-tumor activity. 相似文献
14.
Breast cancer is one of the most common forms of cancer observed in women. Endogenous estrogen is thought to play a major role in its development and estrogen receptor blockers are the most important drugs in its treatment. It has long been thought that any conditions or exposures, which enhance estrogenic responses, would result in an increased risk for breast cancer. The discovery of the second estrogen receptor, ERβ, which can have effects opposite to those of the well-known ‘original’ estrogen receptor (now called ER) challenges this simplistic view. In order to understand breast cancer one must first understand how the normal breast is maintained. The functions of ERβ in the breast remain to be defined but from what we have learnt about its activities in in vitro systems, this estrogen receptor may have a protective role in the breast. Studies in human and rodent breasts as well as in human breast cancer biopsies reveal that ERβ is by far the more abundant of the two ERs. Despite the role of estrogen in proliferation of the breast, neither of the two ERs appears to located in epithelial cells which divide in response to estrogen. In order to define the functions of ERβ in the normal and malignant breast, we have created mice in which the ERβ gene has been inactivated. Studies of the breasts of ERβ knock out mice (BERKO) revealed abnormal epithelial growth, overexpression of Ki67 and severe cystic breast disease as mice age. 相似文献
15.
Clinical management of breast cancer is increasingly guided by assessment of tumor phenotypic parameters. One of these is estrogen receptor (ER) status, currently defined by ERalpha expression. However with the discovery of a second ER, ERbeta and its variant isoforms, the definition of ER status is potentially more complex. In breast tumors there are two ERbeta expression cohorts. One where ERbeta is co-expressed with ERalpha and the other expressing ERbeta alone. In the latter subgroup of currently defined ER negative patients ERbeta has the potential to be a therapeutic target. Characterization of the nature and role of ERbeta in ERalpha negative tumors is essentially unexplored but available data suggest that the role of ERbeta may be different when co-expressed with ERalpha and when expressed alone. This review summarizes available data and explores the possibility that ERbeta signaling may be a therapeutic target in these tumors. Evidence so far supports the idea that the role of ERbeta in breast cancer is different in ERalpha negative compared to ERalpha positive tumors. However, cohort size and numbers of independent studies are small to date, and more studies are needed with better standardization of antibodies and protocols. Also, the ability to determine the role of ERbeta in ERalpha negative breast cancer and therefore assess ERbeta signaling pathways as therapeutic targets would be greatly facilitated by identification of specific downstream markers of ERbeta activity in breast cancer. 相似文献
16.
We propose a hypothesis for breast cancer (BC) development and its implications for BC prevention. We describe a model in which some breast cells function as both stem cells and steroid sensors (steroid sensitive stem cells). Estrogen receptors on those cells could be upregulated in women who had increased cumulative exposure to estrogen, leading to their progressive sensitization. At menopause, such women experience considerable decline of estrogen concentration in their blood. Consequently, the sensitized stem cells activate mechanisms of local estrogen synthesis including the activation of aromatase. The intracrine build-up of estrogen and its metabolites induces proliferation and genetic dysfunction. Eventually, a normal stem cell transforms into an estrogen-sensitive cancer stem cell that is capable of tumor initiation and delineation into other phenotypes of cancer cells. This hypothesis is supported by significant in-vitro and clinical research evidence. According to this model, we suggest that estrogen therapy could be protective against BC. Alternatively, aromatase inhibitors are expected to be effective in BC prevention. A combination of AIs and estrogen might augment the preventative merits of both drugs and maintain a good tolerability profile for long-term prevention protocols. 相似文献
17.
The aim of this work was to investigate the mechanism of action of ferrocifen (Fc-OH-TAM), the ferrocenyl analog of 4-hydroxy-tamoxifen (OH-TAM), which is the active metabolite of tamoxifen, the drug most widely prescribed for treatment of hormone-dependent breast cancers. Fc-OH-TAM showed an anti-proliferative effect on the six breast cancer cell lines tested, 3 ERα positive (MCF-7, T-47D, ZR-75-1) and 3 ERα negative (MDA-MB-231, SKBR-3, Hs578-T) whatever their ER (estrogen receptor) status. However, the mechanism of action of the ferrocenyl derivative appeared to differ depending on the status of the ERα. Analysis of cell cycle distribution revealed that Fc-OH-TAM first recruits cells in the S phase in both ERα positive and ERα negative cells. In the presence of ERα, Fc-OH-TAM allowed cell cycle progression, with a subsequent blockade in G0/G1, whereas in the absence of ERα, cells remained in the S phase. Significant production of ROS was observed only in the presence of Fc-OH-TAM in both ERα positive and negative breast cancer cell lines. Within our experimental conditions, this ROS production is associated with cell cycle arrest and senescence rather than apoptosis. In the presence of ERα, Fc-OH-TAM seems to mainly act in the same way as OH-TAM but also induces an additional cytotoxic effect not mediated by the receptor. Our data suggest that this cytotoxic effect of Fc-OH-TAM is expressed via a mechanism of action distinct from the non-genomic pathway observed with high doses of OH-Tamoxifen. 相似文献
18.
Estrogens are considered to play a major role in promoting the proliferation of both the normal and the neoplastic breast epithelium. Their role as breast carcinogens has long been suspected and recently confirmed by epidemiological studies. Three major mechanisms are postulated to be involved in their carcinogenic effects: stimulation of cellular proliferation through their receptor-mediated hormonal activity, direct genotoxic effects by increasing mutation rates through a cytochrome P450-mediated metabolic activation, and induction of aneuploidy. Recently it has been fully demonstrated that estrogens are carcinogenic in the human breast by testing in an experimental system the natural estrogen 17β-estradiol (E 2) by itself or its metabolites 2-hydroxy, 4-hydroxy, and 16- a-hydroxy-estradiol (2-OH-E 2, 4-OH-E 2, and 16--OH E 2), respectively, by inducing neoplastic transformation of human breast epithelial cells (HBEC) MCF-10F in vitro to a degree at least similar to that induced by the chemical carcinogen benz( a)pyrene (BP). Neither Tamoxyfen (TAM) nor ICI-182,780 abrogated the transforming efficiency of estrogen or its metabolites. The E 2 induced expression of anchorage independent growth, loss of ductulogenesis in collagen, invasiveness in Matrigel, is associated with the loss of 9p11-13 and only invasive cells that exhibited a 4p15.3-16 deletion were tumorigenic. Tumors were poorly differentiated ER- and progesterone receptor negative adenocarcinomas that expressed keratins, EMA and E-cadherin. The E 2 induced tumors and tumor-derived cell lines exhibited loss of chromosome 4, deletions in chromosomes 3p12.3-13, 8p11.1-21, 9p21-qter, and 18q, and gains in 1p, and 5q15-qter. The induction of complete transformation of the human breast epithelial cell MCF-10F in vitro confirms the carcinogenicity of E 2, supporting the concept that this hormone could act as an initiator of breast cancer in women. This model provides a unique system for understanding the genomic changes that intervene for leading normal cells to tumorigenesis and for testing the functional role of specific genomic events taking place during neoplastic transformation. 相似文献
19.
BackgroundThere is accumulating epidemiological and preclinical evidence that estrogen might be a driver of lung cancer. Breast cancer survivors can offer a unique patient cohort to examine the effect of antiestrogen therapy on lung cancer carcinogenesis because many of these women would have received long-term selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) as adjuvant treatment. Our hypothesis is that estrogens play a role in lung cancer development, and that antiestrogen therapy would affect the incidence of subsequent lung cancer among breast cancer survivors. MethodsUsing the Taiwan National Health Insurance (NHI) database, the study included 40,900 survivors of non-metastatic breast cancer after primary surgery, and most antiestrogen users complied well with the medication regimen. We evaluate the effect of antiestrogen therapy on the incidence of subsequent lung cancers. ResultsThis population-based study revealed that antiestrogen use in breast cancer patients was associated with a reduced risk of subsequent lung cancer in older patients (≥50 years) (HR 0.73, 95%CI 0.54–0.99) when compared with breast cancer survivors who did not use antiestrogens. ConclusionThe study supports the hypothesis that antiestrogen therapy modifies lung cancer carcinogenesis in older women. Further well-designed clinical trials to explore the potential of antiestrogens in lung cancer prevention and treatment would be worthwhile. 相似文献
20.
In contrast to aromatase inhibitors, which are now in clinical use, the development of steroid sulphatase (STS) inhibitors for breast cancer therapy is still at an early stage. STS regulates the formation of oestrone from oestrone sulphate (E1S) but also controls the hydrolysis of dehydroepiandrosterone sulphate (DHEA-S). DHEA can be reduced to 5-androstenediol (Adiol), a steroid with potent oestrogenic properties. The active pharmacophore for potent STS inhibitors has now been identified, i.e. a sulphamate ester group linked to an aryl ring. This has led to the development of a number of STS inhibitors, some of which are due to enter Phase I trials in the near future. Such first generation inhibitors include the tricyclic coumarin-based 667 COUMATE. Aryl sulphamates, such as 667 COUMATE, are taken up by red blood cells (rbc), binding to carbonic anhydrase II (CA II), and transit the liver without undergoing first-pass inactivation. 667 COUMATE is also a potent inhibitor of CA II activity with an IC 50 of 17 nM. Second generation STS inhibitors, such as 2-methoxyoestradiol bis-sulphamate (2-MeOE2bisMATE), in addition to inhibiting STS activity, also inhibit the growth of oestrogen receptor negative (ER −) tumours in mice and are anti-angiogenic. As the active pharmacaphores for the inhibition of aromatase and STS are now known it may be possible to develop third generation inhibitors that are capable of inhibiting the activities of both enzymes. Whilst exploring the potential of such a strategy it was discovered that 667 COUMATE possessed weak aromatase inhibitory properties with an IC 50 of 300 nM in JEG-3 cells. The identification of potent STS inhibitors will allow the therapeutic potential of this new class of drug to be explored in post-menopausal women with hormone-dependent breast cancer. Second generation inhibitors, such as 2-MeOE2bisMATE, which also inhibit the growth of ER − tumours should be active against a wide range of cancers. 相似文献
|