首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
人工转录因子研究进展   总被引:3,自引:0,他引:3  
转录因子是真核表达调控中非常重要的一类反式作用因子,通常由DNA结合结构域与效应结构域两部分组成,研究发现这两个结构域可以各自独立发生作用。基于转录因子的这种结构特点,可以人为地选择针对特定序列的DNA结合结构域与具有特定作用的效应结构域构建人工转录因子。目前人工转录因子的DNA结合结构域多为C2H2 型锌指结构,每一个锌指单元由大约30个氨基酸组成,识别DNA双螺旋大沟中相连的3bp序列,并可通过氢键作用与相应的碱基结合;多个锌指可以串联成簇,从而识别并结合较长的DNA序列区域。常见的人工转录因子的效应结构域有激活结构域以及抑制结构域,不同的效应结构域赋予人工转录因子不同的功能。目前人工转录因子已经在基础研究、药物设计以及基因治疗等领域得到了广泛的应用。  相似文献   

5.
The major nitrogen-regulatory gene nit-2 of Neurospora crassa activates the expression of numerous unlinked structural genes which specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein of 1036 amino acid residues with a single 'zinc finger' and a downstream basic region, which together may constitute a DNA-binding domain. The zinc finger domain of the NIT2 protein was synthesized in vitro and also expressed as a fusion protein in Escherichia coli to examine its DNA-binding activity. The wild-type NIT2 finger domain protein binds to the promoter region of nit-3, the nitrate reductase structural gene. A series of NIT2 mutant proteins obtained by site-directed mutagenesis was expressed and tested for functional activity. The results demonstrate that both the single zinc-finger motif and the downstream basic region of NIT2 are critical for its trans-activating function in vivo and specific DNA-binding in vitro.  相似文献   

6.
7.
AOBP, a DNA-binding protein in pumpkin, contains a Dof domain that is composed of 52 amino acid residues and is highly conserved in several DNA-binding proteins of higher plants. The Dof domain has a significant resemblance to Cys2/Cys2 zinc finger DNA-binding domains of steroid hormone receptors and GATA1, but has a longer putative loop where an extra Cys residue is conserved. We show that the Dof domain in AOBP functions as a zinc finger DNA-binding domain and suggest that the Cys residue uniquely conserved in the putative loop might negatively regulate the binding to DNA.  相似文献   

8.
9.
植物C2H2型锌指蛋白的结构与功能   总被引:21,自引:3,他引:18  
黄骥  王建飞  张红生 《遗传》2004,26(3):414-418
  相似文献   

10.
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein–protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.  相似文献   

11.
The Cys(2)-His(2)-type zinc finger DNA-binding proteins can be engineered to bind specifically to many different DNA sequences. A single zinc finger typically binds to a 3-4-base pair DNA subsite. One strategy for design is to identify highly specific fingers that recognize each of the 64 possible DNA triplets. We started with a subgroup of the 64 triplets, the GNN-binding fingers. The GNN-binding fingers have been examined in several studies, but previous studies did not produce specific fingers for all of the 16 GNN triplets. These previous studies did not provide any information on the possible positional or context effects on the performance of these fingers. To identify the most specific design and take the possible positional effects into consideration, we did a large-scale site selection experiment on our GNN designs. From this study, we identified very specific fingers for 14 of the 16 GNN triplets, demonstrating for the first time a clear positional dependence for many of the designs. Further systematic specificity study reveals that the in vivo functionality of these zinc finger proteins in a reporter assay depends on their binding affinities to their target sequences, thus giving a better understanding of how these zinc finger proteins might function inside cells.  相似文献   

12.
High-affinity, sequence-specific DNA binding by Cys(2)-His(2) zinc finger proteins is mediated by both specific protein-base interactions and non-specific contacts between charged side-chains and the phosphate backbone. In addition, in DNA complexes of multiple zinc fingers, protein-protein interactions between the finger units contribute to the binding affinity. We present NMR evidence for another contribution to high- affinity binding, a highly specific DNA-induced helix capping involving residues in the linker sequence between fingers. Capping at the C terminus of the alpha-helix in each zinc finger, incorporating a consensus TGEKP linker sequence that follows each finger, provides substantial binding energy to the DNA complexes of zinc fingers 1-3 of TFIIIA (zf1-3) and the four zinc fingers of the Wilms' tumor suppressor protein (wt1-4). The same alpha-helix C-capping motif is observed in the X-ray structures of four other protein-DNA complexes. The structures of each of the TGEKP linkers in these complexes can be superimposed on the linker sequences in the zf1-3 complex, revealing a remarkable similarity in both backbone and side-chain conformations. The canonical linker structures from the zinc-finger-DNA complexes have been compared to the NMR structure of the TGEKP linker connecting fingers 1 and 2 in zf1-3 in the absence of DNA. This comparison reveals that additional stabilization likely arises in the DNA complexes from hydrogen bonding between the backbone amide of E3 and the side-chain O(gamma) of T1 in the linker. We suggest that these DNA-induced C-capping interactions provide a means whereby the multiple-finger complex, which must necessarily be domain-flexible in the unbound state as it searches for the correct DNA sequence, can be "snap-locked" in place once the correct DNA sequence is encountered. These observations provide a rationale for the high conservation of the TGEKP linker sequences in Cys(2)-His(2) zinc finger proteins.  相似文献   

13.
14.
BACKGROUND: Several strategies have been reported for the design and selection of novel DNA-binding proteins. Most of these studies have used Cys(2)His(2) zinc finger proteins as a framework, and have focused on constructs that bind DNA in a manner similar to Zif268, with neighboring fingers connected by a canonical (Krüppel-type) linker. This linker does not seem ideal for larger constructs because only modest improvements in affinity are observed when more than three fingers are connected in this manner. Two strategies have been described that allow the productive assembly of more than three canonically linked fingers on a DNA site: connecting sets of fingers using linkers (covalent), or assembling sets of fingers using dimerization domains (non-covalent). RESULTS: Using a combination of structure-based design and phage display, we have developed a new dimerization system for Cys(2)His(2) zinc fingers that allows the assembly of more than three fingers on a desired target site. Zinc finger constructs employing this new dimerization system have high affinity and good specificity for their target sites both in vitro and in vivo. Constructs that recognize an asymmetric binding site as heterodimers can be obtained through substitutions in the zinc finger and dimerization regions. CONCLUSIONS: Our modular zinc finger dimerization system allows more than three Cys(2)His(2) zinc fingers to be productively assembled on a DNA-binding site. Dimerization may offer certain advantages over covalent linkage for the recognition of large DNA sequences. Our results also illustrate the power of combining structure-based design with phage display in a strategy that assimilates the best features of each method.  相似文献   

15.
16.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   

17.
Nitrogen metabolism is a highly regulated process in Neurospora crassa . The structural genes that encode nitrogen catabolic enzymes are subject to nitrogen metabolite repression, mediated by the positive-acting NIT2 protein and by the negative-acting NMR protein. NIT2, a globally acting factor, is a member of the GATA family of regulatory proteins and has a single Cys2/Cys2 zinc finger DNA-binding domain. The negative-acting NMR protein interacts via specific protein–protein binding with two distinct regions of the NIT2 protein, a short alpha-helical motif within the NIT2 DNA-binding domain and a second motif at its carboxy terminus. Deletions of segments of NIT2 throughout most of its length result in truncated proteins, which are still functional for activating gene expression; most of these mutant NIT2 proteins still allow proper nitrogen repression of nitrate reductase synthesis. In contrast, deletions or certain amino acid substitutions within the zinc finger and the carboxy-terminal tail result in a loss of nitrogen metabolite repression. Those mutated forms of NIT2 that are insensitive to nitrogen repression have also lost one of the NIT2–NMR protein–protein interactions. These results provide compelling evidence that the specific NIT2–NMR interactions have a regulatory function and play a central role in establishing nitrogen metabolite repression.  相似文献   

18.
THAP1, the founding member of a previously uncharacterized large family of cellular proteins (THAP proteins), is a sequence-specific DNA-binding factor that has recently been shown to regulate cell proliferation through modulation of pRb/E2F cell cycle target genes. THAP1 shares its DNA-binding THAP zinc finger domain with Drosophila P element transposase, zebrafish E2F6, and several nematode proteins interacting genetically with the retinoblastoma protein pRb. In this study, we report the three-dimensional structure and structure-function relationships of the THAP zinc finger of human THAP1. Deletion mutagenesis and multidimensional NMR spectroscopy revealed that the THAP domain of THAP1 is an atypical zinc finger of approximately 80 residues, distinguished by the presence between the C2CH zinc coordinating residues of a short antiparallel beta-sheet interspersed by a long loop-helix-loop insertion. Alanine scanning mutagenesis of this loop-helix-loop motif resulted in the identification of a number of critical residues for DNA recognition. NMR chemical shift perturbation analysis was used to further characterize the residues involved in DNA binding. The combination of the mutagenesis and NMR data allowed the mapping of the DNA binding interface of the THAP zinc finger to a highly positively charged area harboring multiple lysine and arginine residues. Together, these data represent the first structure-function analysis of a functional THAP domain, with demonstrated sequence-specific DNA binding activity. They also provide a structural framework for understanding DNA recognition by this atypical zinc finger, which defines a novel family of cellular factors linked to cell proliferation and pRb/E2F cell cycle pathways in humans, fish, and nematodes.  相似文献   

19.
20.
ADR1a, a zinc finger peptide, exists in two folded conformations   总被引:1,自引:0,他引:1  
R X Xu  S J Horvath  R E Klevit 《Biochemistry》1991,30(14):3365-3371
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号