首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A field experiment was conducted with a water-stressed treatmentand well-watered control using eight maize (Zea mays L.) cultivars.Effects of water deficits on cell membrane stability (CMS) measuredby the polyethylene glycol (PEG) test, leaf surface wax content,and relative growth rate were investigated. Cytoplasmic lipidcontent was also analysed. Cell membrane stability and leaf surface wax content increasedwith the degrees of stress. Tolerance to drought evaluated asincrease in CMS under water deficit conditions was well differentiatedbetween cultivars and was well correlated with a reduction inrelative growth rate under stress. A negative correlation wasfound between percentage injury in the PEG test and leaf surfacewax content. High phospholipid contents were observed in tissuesof drought tolerant cultivars under water deficit conditions. Key words: Cell membrane stability, cytoplasmic lipid, drought tolerance, leaf surface wax, relative growth rate  相似文献   

2.
The morphological and physiological adaptation of Lactuca sativaL. (‘Vegas’) to different irradiance levels andrates of nitrogen supply was analysed in such a way that effectsof irradiance were clearly distinguished from the effects ofnitrogen. Lettuce was grown in a glasshouse in aerated nutrientsolutions containing all necessary nutrients except nitrogen.Nitrogen was supplied in excess and at limiting rates in relationto plant growth to provide steady state nutrition. Shading theplants created the low irradiance level. The effects of nitrogensupply and irradiance on growth showed a marked interaction.Dry matter production decreased strongly with decreasing nitrogensupply at high irradiance, but decreased only slightly at lowirradiance. Nitrogen had no effect on radiation use efficiencyexcept for the lowest nitrogen treatment at high irradiance.The effect of nitrogen on growth was mainly mediated by itseffect on leaf area development and hence on light interception.Decreases in leaf area were due to decreases in specific leafarea and dry matter partitioning towards the leaves, while thedecrease in specific leaf area was the result of an increasein leaf dry matter percentage at low nitrogen supply. Dry matterand nitrogen partitioning, and nitrate concentration were closelyrelated to plant nitrogen concentration. Irradiance did notaffect these relationships. Irradiance influenced partitioningonly indirectly by affecting plant nitrogen concentration. Thedemand for organic nitrogen per unit leaf area was lower atlower irradiance. Organic nitrogen per unit leaf area appearedto be adjusted to the irradiance level, independently of thenitrogen supply, suggesting priority of nitrogen usage in photosynthesis.Copyright 2000 Annals of Botany Company Lactuca sativa L., lettuce, growth, irradiance, leaf area, nitrogen, radiation use efficiency, partitioning  相似文献   

3.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

4.
Salinity causes physiological and morphological changes in plantsand calcium can mitigate many of these effects. In this study,the effects of salinity (75 mol m–3 NaCl) with or withoutsupplemental Ca (10 mol m–3) on the kinetics of maize(Zea mays L.) leaf elongation were examined using Linear VariableDifferential Transformers (LVDTs). Short-term growth responsesof two cultivars (Dekalb hybrid XL75 and Pioneer hybrid 3906)differing in salt tolerance were compared. Salinity caused animmediate reduction in the leaf elongation rate (LER). Within2 h, elongation rates had increased and reached new steady rates.Significant differences between salinity treatments with highand low Ca could be detected within the first 2 h after impositionof salinity for Dekalb hybrid XL75, but not for Pioneer hybrid3906. After 24 h, distinct differences for both cultivars weredetected. Dekalb hybrid XL75, a Na-includer, was more salt-sensitiveand responsive to supplemental Ca (10 mol m–3) than Pioneerhybrid 3906, a Na-excluder. Turgor was not reduced 24 h aftersalinization because there was complete osmotic adjustment inthe elongation zone of the leaves. Analysis of the growth parameterslimiting LER indicated that the yield threshold (Y) was increasedfor salt-stressed plants. In addition, both the cell wall extensibilityand hydraulic conductance were reduced 24 h after salinization.Supplemental Ca increased LER of salt-stressed plants by increasinghydraulic conductance. The differences in LER of the two cultivarsunder saline conditions was attributed to differences in theincrease of Y caused by salinity. Key words: Calcium, growth, salinity, sodium, Zea mays L.  相似文献   

5.
STEER  B. T. 《Annals of botany》1982,49(2):191-198
Species differ in the relationship of nitrate reductase activityto nitrate uptake. In Capsicum annuum different diurnal patternsof leaf nitrate reductase activity and nitrate uptake have beenreported. As a consequence, the relationship of free nitratein the plant to nitrate supplied has a higher level of significancethan has reduced nitrogen to nitrate supplied. In Zea mays ithas been reported that leaf nitrate reductase activity respondsdirectly to nitrate translocation to the leaf and in this speciesthe relationship of greatest significance is reduced nitrogencontent to nitrate supplied. In both species, and also in Cucumis melo, the proportion oftotal plant free nitrate and reduced nitrogen in the roots decreases,and in the stem increases, with increasing nitrate supplied. The accumulation of free nitrate in leaves is accompanied bya quantitatively different relationship between reduced nitrogenand dry weight compared to leaves not accumulating nitrate. Capsicum annuum. L., Cucumis melo L., melon, Zea mays L., maize, sweet corn, nitrate reductase, nitrate uptake  相似文献   

6.
Forage maize (Zea mays L.) was grown in monocultures at populationdensities ranging from 4·9 to 11·1 plants m–2.Data for plant growth analysis were obtained from six harvestscarried out from 21 to 115 d after planting. Conventional plantgrowth analysis indicated that improvements in forage productivityper unit land area by high population density resulted directlyfrom increased plant presence. Reduction in dry weight per shootat high population density was associated with reduced unitleaf rate. Leaf area ratio was little affected, which may implythat competition for soil nutrients or oxygen was the chiefcause of plant interference. Yield component analysis demonstratedthe increasing importance of population density treatments asa source of variation as growth progressed. Direct relationshipsbetween variation in yield per plant and variation in two yieldcomponents, stem diameter and the inverse of leaf area ratio,were demonstrated. Both conventional plant growth analysis andyield component analysis indicated complex physiological andmorphological adjustments to species population density. Plant growth analysis, yield component analysis, Zea mays L  相似文献   

7.
The single-gene mutation afila in pea (Pisum sativum L.) resultsin the replacement of proximal leaflets with branched tendrils,thereby reducing leaf area. This study investigated whethertheafila line could adjust biomass partitioning when exposedto varying nutrient regimes, to compensate for reduced leafarea, compared with wild-type plants. Wild-type and afila near-isogeniclines were grown in solution culture with nitrate-N added toinitially N-starved seedlings at relative addition rates (RN)of 0.06, 0.12, 0.15 and 0.50 d-1. The relative growth rate (RW)of the whole plants closely matched RNat 0.06 and 0.12 d-1,but higher RNresulted in a slightly higher growth rate. At agiven RN, the wild-type line had lower plant nitrogen statusthan the afila line. RWof the roots of the afila line was lessthan RWof the roots of the wild-type at the three higher ratesof N supply despite a greater accumulation of N in the rootsof the afila plants. Consequently, plant nitrogen productivity(growth rate per unit nitrogen) was lower for afila. Dry matterallocation was strongly influenced by nitrogen status, but nodifferences in shoot–root dry matter allocation were foundbetween wild-type and afila with the same plant N status. Theseresults imply that decreased leaf area as a result of the single-genemutation afila affects dry matter allocation, but only accordingto its effect on the nitrogen status. Copyright 2000 Annalsof Botany Company Pisum sativum, pea, nitrogen limitation, growth, shoot–root allocation, relative growth rate, nitrogen productivity, isolines  相似文献   

8.
Numerous studies have dealt with the relationship between leafnitrogen content and leaf irradiance. However, most of themrefer to dense stands presenting reduced horizontal heterogeneityof foliage distribution. Both gradients of leaf nitrogen andleaf irradiance related to canopy depth are significant undersuch conditions, and modelling radiative exchange using a turbid-mediumanalogy and dividing the canopy into vegetation layers is sufficient.Conversely, row crops such as maize are characterized by stronghorizontal heterogeneity of foliage distribution and the one-dimensional(1D) approach may be unsuitable. We thus modelled the three-dimensional(3D) geometry of maize canopies with varying densities and atdifferent developmental stages using plant digitizing underfield conditions. The nitrogen content per unit area of eachleaf part was obtained subsequently by nitrogen analysis. Wenext calculated radiative exchange using a 3D volume-based approachwithin the canopies in order to estimate local leaf irradianceon a daily integration scale. Vertical gradients in leaf nitrogencontent per unit area observed in dense stands during the vegetativephase corresponded largely to those reported in the literature.We also identified significant gradients in nitrogen contentalong the leaves, which had not before been clearly demonstrated.Our study shows that local light climate during plant developmentplays a major role in leaf nitrogen distribution and remobilization.Moreover, brutal plant thinning involves rapid changes in leafnitrogen partitioning. It is concluded that taking account ofthe 3D heterogeneity of nitrogen and irradiance distributionmay have implications for modelling crop photosynthesis andproduction. Copyright 1999 Annals of Botany Company 3D plant architecture, horizontal gradients in leaf nitrogen, leaf irradiance, leaf nitrogen content per unit area, maize, nitrogen partitioning, nitrogen remobilization, virtual plant, Zea mays L.  相似文献   

9.
Stands of Agropyron repens (couch grass) and single young sugar-beetplants were grown in pots, separately and in competition, withnitrogen and potassium each supplied at three rates in a factorialdesign. Both nitrogen and potassium increased relative growth-ratesof sugar-beet leaves and crowns and fresh-weight/dry-weightratios of all plant parts; the responses were usually curved,the high nutrient levels having little more effect than theintermediate levels. Competition decreased relative growth-ratesand freshweight/dry-weight ratios of all plant parts and alsoleaf-area ratio (F) and net assimilation rate (E). High ratesof nitrogen diminished the effects of competition on relativeleaf growth-rate, F, and on fresh-weight/dry-weight ratios,indicating competition for nitrogen, but high rates of potassiumdiminished only its effect on relative growth-rate of the crown,suggesting that competition for potassium had only a small effect. Competition depressed leaf nitrogen and potassium percentagesand total nitrogen and potassium uptake by the whole plant,but the depressions were small at high rates of nutrient supply,suggesting that the amounts of nitrogen and potassium availablewere nearly adequate for both sugar-beet and A. repens. When total dry weights and leaf areas of sugar-beet were comparedwith corresponding nutrient contents, variation in nitrogencontent alone could account for most of the effects of competitionon growth, but potassium depletion probably also contributeda little. E was correlated with potassium, but not nitrogen,per unit leaf area, but potassium differences could not adequatelyaccount for the effects of competition on E. Competition for potassium produced small effects compared withcompetition for nitrogen, in spite of large responses to addedpotassium, perhaps because potassium moves less readily in thesoil.  相似文献   

10.
The relation between interspecific variation in relative growth rate and carbon and nitrogen economy was investigated. Twentyfour wild species were grown in a growth chamber with a nonlimiting nutrient supply and growth, whole plant photosynthesis, shoot respiration, and root respiration were determined. No correlation was found between the relative growth rate of these species and their rate of photosynthesis expressed on a leaf area basis. There was a positive correlation, however, with the rate of photosynthesis expressed per unit leaf dry weight. Also the rates of shoot and root respiration per unit dry weight correlated positively with relative growth rate. Due to a higher ratio between leaf area and plant weight (leaf area ratio) fast growing species were able to fix relatively more carbon per unit plant weight and used proportionally less of the total amount of assimilates in respiration. Fast growing species had a higher total organic nitrogen concentration per unit plant weight, allocated more nitrogen to the leaves and had a higher photosynthetic nitrogen-use efficiency, i.e. a higher rate of photosynthesis per unit organic nitrogen in the leaves. Consequently, their nitrogen productivity, the growth rate per unit organic nitrogen in the plant and per day, was higher compared with that of slow growing species.  相似文献   

11.
We investigated the effect of reproductive growth on the profilesof leaf senescence in maize (Zea mays L.) and sunflower (Helianthusannuus L.). Leaf senescence after flowering was assessed usingboth structural (leaf chlorophyll, nitrogen and dry matter)and functional (photosynthesis) variables in undisturbed plants(+G) and in plants in which grain set was prevented (-G). Twoweeks after flowering, lack of grain accelerated senescencein maize and delayed senescence in sunflower as indicated byleaf chlorophyll; leaf nitrogen and dry matter were less sensitiveresponse variables. Lack of interaction between reproductivetreatment and leaf position indicates that the senescence signal,whatever its nature, was equally effective throughout the plantin both species. In both species, feedback inhibition of photosynthesiswas first detected 30–35 d after flowering; excess carbohydratein the leaves was therefore an unlikely trigger of acceleratedsenescence in maize. As reproductive development progressed,differences between +G and -G plants were more marked in sunflower,and tended to disappear or reverse in maize. In sunflower, interactionsbetween leaf position and reproductive treatment—attributableto the local effect of grain—were detected around 20–27d after flowering. Copyright 2000 Annals of Botany Company Helianthus annuus, Zea mays, chlorophyll, light, nitrogen, photosynthesis, reproductive growth, senescence, source-sink, SPAD.  相似文献   

12.
Maize(Zea mays L.) plants were grown in a greenhouse with differentlevels of nitrate-N (2 to 20 millimolar). Nitrogen nutritionhad dramatic effects on plant growth and photosynthetic characteristicsof mature leaves. Increasing nitrogen resulted in greater biomassproduction, shoot/root ratios, and rates of leaf expansion duringthe day. The elongating zone of high-N plants had higher activities(per gram fresh weight) of sucrose synthase and neutral invertasethan low-N plants, suggesting that increased leaf growth wasrelated to a greater biochemical capacity for sucrose metabolism. Mature leaves of high-N plants had higher rates of photosynthesisand assimilate export (sucrose formation), and partitioned morecarbon into sucrose relative to starch. Increased photosyntheticrates (leaf area basis) were associated with higher levels ofribulose-l,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylaseand pyruvate, phosphate dikinase (determined immunochemically).In addition, N-nutrition affected the functional organizationof chlorophyll in the leaves. Large increases in the numberof PS I reaction centers were observed which fully accountedfor increases in leaf chlorophyll content with increasing nitratesupply. Collectively, the results suggest that increased growth of maizeplants at high light and optimal nitrogen nutrition is relatedto greater capacity for photosynthesis and translocation inmature leaves, and possibly increased capacity for sucrose metabolismin expanding leaves. (Received May 22, 1989; Accepted August 28, 1989)  相似文献   

13.
A field experiment was conducted to investigate the effect ofK nutrition under water stress conditions on cell membrane stabilitymeasured by the polyethylene glycol test, plant growth, internalplant water relations and solute and mineral concentrationsin maize (Zea mays L.). Water-stressed plants showed greateradaptation to water deficits at higher K levels. Cell membranestability increased, leaf water potential and osmotic potentialdecreased, turgor potential increased and stomatal resistancedecreased with increasing K nutrition. Osmotic adjustment wasevident and it may have been influenced by increased K+ concentrationsin leaf tissues with increasing K nutrition. Higher leaf thicknessand higher leaf water content were observed at higher K levels.Results suggested that higher supplies of K nutrition may increaseplant production during periods of water stress. Key words: Zea mays L., cell membrane stability, leaf water potential, osmotic adjustment, osmotic potential, potassium nutrition, water stress  相似文献   

14.
Baldy, P. 1986. Comparison between growth chamber and field-grownZea mays plants for photosynthetic carboxylase activities andother physiological characteristics with respect to leaf position.—J.exp. Bot. 37: 309–314. The lengths and fresh weights of leaves, and the amounts ofchlorophyll and protein per leaf, were higher in maize grownin a controlled environment than for field-grown maize harvestedat a similar stage of growth with the seventh leaf just emerging.However, the fresh weight and chlorophyll per unit leaf areawere not different and more protein was present per Unit leafarea in maize cultivated in the field, particularly in the 4thleaf. Except in the seventh leaf the youngest present, the PEP carboxylaseactivity was 2-fold higher in field-grown maize than in plantsfrom the controlled environment. The RuBP carboxylase activitywas not significantly affected by growth conditions. The maximumactivities of the carboxylases were found in the 5th leaf formaize grown in the controlled environment and the 4th leaf forfield maize; in these two leaves the ratios of the PEP: RuBPcarboxylasc activities were 3·0 and 4·4 respectively. The results are used to justify the choice of the fully expanded4th leaf of l9-d-old plants grown in a controlled environmentfor studies of the enzymes involved in the photosynthetic carbonmetabolism of this C4 plant. Key words: Growth conditions, PEP carboxylase/RuBP carboxylase activity ratio, Zea mays leaf position  相似文献   

15.
Vacuum infiltration of nitrate and ammonium ions into nitrogen-starvedleaf tissue of Themeda triandra and Zea mays increased the carbondioxide compensation point well in excess of the level normallyassociated with C4 photosynthetic pathway plants. The net photosyntheticrate was stimulated by the nitrate ions and but slightly inhibitedby the ammonium ions. These effects were immediate. The ionsincreased the Themeda triandra carbon dioxide compensation pointand had no effect on that of Zea mays when these plants weregrown on fertilized soil. The dark respiration rates of nitrogen-starvedThemeda triandra leaves were unaffected by the infiltrationof inorganic nitrogen ions. The results suggest that photosynthesisand photorespiration are directly influenced by inorganic nitrogenions. Themeda triandra, Zen mays, net photosynthetic rate, carbon dioxide compensation points, inorganic nitrogen stimulation  相似文献   

16.
Changes in a range of chlorophyll fluorescence parameters weremonitored for leaves of crops of three Zea mays cultivars (MO17,CB3 and LG11) during early canopy development when large fluctuationsin air temperatures occur. Crops were sown on 1 May 1993 andmeasurements made between 17 May and 7 June. Measurements ofthe ratio of variable to maximal fluorescence of dark-adaptedleaves (Fv/Fm) and the quantum efficiency of photosystem IIphotochemistry (  相似文献   

17.
Ammonium Tolerance and Carbohydrate Status in Maize Cultivars   总被引:7,自引:2,他引:5  
Four maize (Zea mays L.) hybrids were grown hydroponically for4 weeks with 20 mM ammonium or nitrate as the sole nitrogensource. Dry matter production was strongly depressed by ammoniumnutrition in the hybrid Helga relative to plants grown on nitrate,and moderately decreased in the hybrid Melina. Ammonium hadno inhibitory effect on total yield in the other two hybrids(Ramses and DK 261). The relative growth rate (RGR) of rootsand shoots of the sensitive hybrid Helga decreased significantlyunder ammonium nutrition during the first 2 weeks of the experiment,while at the end of the experiment nitrogen form had no effecton the RGR in any of the four hybrids. The strong reductionin RGR of Helga in the early seedling stage was correlated withthe accumulation of twice the concentration of free ammoniumin the shoot tissue relative to the other hybrids. Helga wastherefore unable to sufficiently detoxify ammonia in the roots.Root concentrations of water soluble carbohydrates (WSC) inHelga and Melina in the early seedling stage did not differunder ammonium and nitrate nutrition. In contrast, Ramses andDK 261 both had elevated WSC concentrations in ammonium-fedroots. It is hypothesized that a sufficient supply of carbonskeletons for ammonium assimilation in the roots is requiredfor maximum growth under high ammonium concentrations, and thatthere is genotypic variability in this physiological trait. Ammonium; carbohydrates; growth rate; maize; nitrate; roots; Zea mays L  相似文献   

18.
VOS  J; BIEMOND  H 《Annals of botany》1992,70(1):27-35
Potatoes (Solanum tuberosum L) were planted in pots in a temperature-controlledglasshouse to collect data on the rate of leaf apearance, leafexpansion, apical lateral branching and active life spans ofleaves The treatments consisted of three rates of nitrogen supply,i e the NI treatment with 2 5 g N per pot and the N2 and N3treatments with 8 and 16 g N per pot, respectively The rate of leaf appearance was 0·53 leaves d–1(one leaf per 28 °C d) and was negligibly affected by nitrogensupply The rate of leaf expansion was related to leaf numberand nitrogen supply The areas of mature leaves increased withleaf number on the main stem to reach a maximum for leaf numbers12–14, and declined for higher leaf numbers Leaves onapical lateral branches declined in mature area with increasein leaf number The expansion rate of leaves was the dominantfactor that determined the mature leaf area, irrespective ofleaf number and nitrogen treatment The smallest leaves wereobserved at the lowest rate of nitrogen supply Nitrogen promotedapical branching and hence the total number of leaves that appearedon a plant The proportion of total leaf area contributed byleaves on apical branches increased with time and nitrogen supply Active life span, i e the period of time between leaf appearanceand yellowing of the leaf, showed a similar relation to leafnumber as mature leaf area, at least in qualitative terms Leavesof the N3 treatment showed systematically longer life spansthan leaves of the NI and N2 treatment in the order of 3 weeksThe number of main stem leaves was not affected by nitrogensupply Potato, Solanum tuberosum L, leaf development, leaf extension, plant structure, nitrogen nutrition  相似文献   

19.
Coaldrake, P. D., Pearson, C. J. and Saffigna, P. G. 1987. Grainyield of Pennisetum americanum adjusts to nitrogen supply bychanging rates of grain filling and root uptake of nitrogen.–J.exp. Bot 38: 558–566. Pearl millet (Pennisetum americanum(L.)Leeke) was grown in containers at three constant rates of nitrogensupply or with the nitrogen supply increased from the lowestto the highest rate during panicle differentiation or at anthesis.We measured the rate and duration of nitrogen and dry weightgain by individual grains and nitrogen (15N) uptake by rootsand its distribution during grain filling. The total amountsof nitrogen and dry weight in all grain per plant at the lowestnitrogen supply were 8% and 14% respectively of plants growncontinuously at the highest rate of nitrogen. This was becauselow rates of nitrogen supply reduced grain number, mean grainweight and the nitrogen content of each individual grain. Theamino acid composition of the grain protein was affected onlyslightly by nitrogen treatments. Rates of grain growth were sensitive to nitrogen supply whereasthe duration of nitrogen movement to the grain was not. Nitrogenuptake by roots continued throughout grain filling; rates ofuptake per g root in plants given least nitrogen were one-halfthose of plants given the highest amount of nitrogen. A changefrom lowest to highest nitrogen supply at panicle differentiationincreased the uptake of nitrogen by roots and the rates of growthof individual grains, to the rates observed in plants whichhad been supplied continuously with the highest nitrogen. Whenthe change in supply was made at anthesis there was rapid movementof nitrogen into the plant but this was not translated intomore rapid grain growth. Key words: Nitrogen supply, Pennisetum americanum, grain yield, root uptake  相似文献   

20.
A comparative examination has been made under controlled conditionsof the interacting effects on growth in the vegetative phasewhich takes place when the diurnal temperature is either maintainedconstant at 20 and 25 ?C or reduced at night by 5 and 10 ?Cand the plants subjected daily to either 2.16 or 4.32 ? 104lx for 14 h. For each species (Gossypium hirsutum, Hclianthusannuus, Phaseolus vulgaris and Zea mays) the changes in netassimilation rate, the leaf area ratio and the relative growthrates in plant weight and leaf area were recorded. Contrary to some previous findings, none of these componentsof growth are favoured by cool nights. Rather such reductionsin temperature retard the growth processes to a varying degreeaccording to the species and the component. In general, significantreductions are more evident for the two relative growth rateswhen a drop from 20 to 10 ?C is combined with the lower levelof illumination. The implications of these results are considered in relationto a prior study where for similar light conditions the samespecies plants were subjected to constant temperatures rangingfrom 10 to 25 ?C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号