首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
IMP dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. Here we show that both IMPDH type 1 (IMPDH1) and IMPDH type 2 are associated with polyribosomes, suggesting that these housekeeping proteins have an unanticipated role in translation regulation. This interaction is mediated by the subdomain, a region of disputed function that is the site of mutations that cause retinal degeneration. The retinal isoforms of IMPDH1 also associate with polyribosomes. The most common disease-causing mutation, D226N, disrupts the polyribosome association of at least one retinal IMPDH1 isoform. Finally, we find that IMPDH1 is associated with polyribosomes containing rhodopsin mRNA. Because any perturbation of rhodopsin expression can trigger apoptosis in photoreceptor cells, these observations suggest a likely pathological mechanism for IMPDH1-mediated hereditary blindness. We propose that IMPDH coordinates the translation of a set of mRNAs, perhaps by modulating localization or degradation.  相似文献   

2.
The RP 10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by mutations in the widely expressed protein inosine 5′-monophosphate dehydrogenase type 1 (IMPDH1). These mutations have no effect on the enzymatic activity of IMPDH1, but do perturb the association of IMPDH1 with nucleic acids. Two newly discovered retinal-specific isoforms, IMPDH1(546) and IMPDH1(595), may provide the key to the photoreceptor specificity of disease [S.J. Bowne, Q. Liu, L.S. Sullivan, J. Zhu, C.J. Spellicy, C.B. Rickman, E.A. Pierce, S.P. Daiger, Invest. Ophthalmol. Vis. Sci. 47 (2006) 3754-3765]. Here we express and characterize the normal IMPDH1(546) and IMPDH1(595), together with their adRP-linked variants, D226N. The enzymatic activity of the purified IMPDH1(546), IMPDH1(595) and the D226N variants is indistinguishable from the canonical form. The intracellular distribution of IMPDH1(546) and IMPDH1(595) is also similar to the canonical IMPDH1 and unaffected by the D226N mutation. However, unlike the canonical IMPDH1, the retinal specific isoforms do not bind significant fractions of a random pool of oligonucleotides. This observation indicates that the C-terminal extension unique to the retinal isoforms blocks the nucleic acid binding site of IMPDH1, and thus uniquely regulates protein function within photoreceptors.  相似文献   

3.
4.
Ingley E  Hemmings BA 《FEBS letters》2000,478(3):253-259
The pleckstrin homology (PH) domain of the protooncogenic serine/threonine protein kinase PKB/Akt can bind phosphoinositides. A yeast-based two-hybrid system was employed which identified inosine-5' monophosphate dehydrogenase (IMPDH) type II as specifically interacting with PKB/Akts PH domain. IMPDH catalyzes the rate-limiting step of de novo guanosine-triphosphate (GTP) biosynthesis. Using purified fusion proteins, PKB/Akts PH domain and IMPDH associated in vitro and this association moderately activated IMPDH. Purified PKB/Akt also associated with IMPDH in vitro. We could specifically pull-down PKB/Akt or IMPDH from mammalian cell lysates using glutathione-S-transferase (GST)-IMPDH or GST-PH domain fusion proteins, respectively. Additionally, PKB/Akt and IMPDH could be co-immunoprecipitated from COS cell lysates and active PKB/Akt could phosphorylate IMPDH in vitro. These results implicate PKB/Akt in the regulation of GTP biosynthesis through its interaction with IMPDH, which is involved in providing the GTP pool used by signal transducing G-proteins.  相似文献   

5.
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo purine biosynthesis and is a postulated key enzyme in nitrogen assimilation in ureide-exporting nodules. A 2016 bp cDNA for IMPDH, designated as IMPDH, was cloned from a soybean nodule cDNA library. IMPDH encodes a polypeptide of 502 amino acids with a predicted molecular weight of 53000 and a pI of 5.54. The deduced IMPDH is 70.5% identical to that in Arabidopsis, with a 100% homology in the putative active-site region. Expressing the cloned cDNA in Escherichia coli mutant strain KLC381 (DeltaguaB) restored IMPDH activity, permitting bacterial growth on minimal medium. Southern blot analysis suggested a single copy of IMPDH gene in the soybean genome. Northern blot analysis showed that the expression of IMPDH gene is apparently nodule-specific.  相似文献   

6.
7.
8.
9.
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.  相似文献   

10.
Inosine 5′-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) catalyzes a crucial step in guanine nucleotide biosynthesis, thereby governing cell proliferation. In contrast to mammalian IMPDHs, microbial IMPDHs are relatively less explored as potential targets for antimicrobial drug discovery. In continuation with our previous work, here we report the discovery of moderately potent and highly selective Helicobacter pylori IMPDH (HpIMPDH) inhibitors. The present study is mainly focused around our previously identified, modestly potent and relatively nonselective (for HpIMPDH over human IMPDH2) hit molecule IX (16i). In an attempt to optimize the selectivity for the bacterial enzyme, we screened a set of 48 redesigned new chemical entities (NCEs) belonging to 5-aminoisobenzofuran-1(3H)-one series for their in vitro HpIMPDH and human IMPDH2 inhibition. A total of 12 compounds (hits) demonstrated ≥70% HpIMPDH inhibition at 10 μM concentration; none of the hits were active against hIMPDH2. Compound 24 was found to be the most potent and selective molecule (HpIMPDH IC50 = 2.21 µM) in the series. The study reaffirmed the utility of 5-aminoisobenzofuran-1(3H)-one as a promising scaffold with great potential for further development of potent and selective HpIMPDH inhibitors.  相似文献   

11.
To study the induction of differentiation in human melanoma cells, we treated 12 melanoma cell lines with mycophenolic acid and tiazofurin, inhibitors of IMP dehydrogenase (IMPDH). In all cell lines studied, both agents inhibited cell growth and increased melanin content. However, the degree of growth inhibition did not necessarily correspond to the increase in melanin content. A detailed analysis of the HO and SK-MEL-131 cell lines indicated that mycophenolic acid and tiazofurin caused a time- and dose-dependent increase in the expression of a series of other maturation markers, including formation of dendrite-like structures, tyrosinase activity, and reactivity with the CF21 monoclonal antibody. The growth inhibition and melanogenesis induced by the IMPDH inhibitors was abrogated by the addition of exogenous guanosine. No such effect was observed after treatment of the cells with phorbol 12-myristate 13-acetate or retinoic acid, two other inducers of differentiation in these cells. The mycophenolic acid- and tiazofurin-treated cells also showed an increased level of IMPDH mRNA and protein, perhaps because of compensation for the inhibitor-mediated decrease in IMPDH activity. In contrast, treatment with phorbol 12-myristate 13-acetate or retinoic acid resulted in decreased levels of IMPDH mRNA and protein. The lack of a consistent pattern of IMPDH expression in the cells treated with IMPDH inhibitors and phorbol 12-myristate 13-acetate or retinoic acid suggests that the altered expression of IMPDH is not a general requirement for the induction of cell differentiation in these cells. Our results also suggest that IMPDH inhibitors may provide a useful approach to circumvent the differentiation block in melanoma.  相似文献   

12.
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.  相似文献   

13.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyses the rate-limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP content was substantially elevated in MP101 whereas the GTP content was slighty reduced. The activities of IMPDH, adenylosuccinate synthetase and GMP reductase were two to threefold lower in MP101 crude extracts compared with the BW25113 wild-type strain. Guanine induced a threefold reduction in the MP101 ATP pool and a fourfold increase in the GTP pool within 10 min of addition to growing cells; this response does not result from the reduced IMPDH activity or starvation for guanylates. In vivo kinetic analysis using 14-C tracers and 33-P pulse-chasing revealed mutation-associated changes in purine nucleotide fluxes and turnover rates. We conclude that the CBS subdomain of IMPDH may coordinate the activities of the enzymes of purine nucleotide metabolism and is essential for maintaining the normal ATP and GTP pool sizes in E. coli .  相似文献   

14.

Background

Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5′-monophosphate dehydrogenase type II (IMPDH2) encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance.

Methodology/Principal Findings

Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2.

Conclusions

IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.  相似文献   

15.
IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.  相似文献   

16.
The conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) is the committed and rate-limiting reaction in de novo guanine nucleotide biosynthesis. Inosine 5'- monophosphate dehydrogenase (IMPDH) is the enzyme that catalyzes the oxidation of IMP to XMP with the concomitant reduction of nicotinamide adenine dinucleotide (from NAD(+) to NADH). Because of its critical role in purine biosynthesis, IMPDH is a drug design target for anticancer, antiinfective, and immunosuppressive chemotherapy. We have determined the crystal structure of IMPDH from Borrelia burgdorferi, the bacterial spirochete that causes Lyme disease, with a sulfate ion bound in the IMP phosphate binding site. This is the first structure of IMPDH in the absence of substrate or cofactor where the active-site loop (loop 6), which contains the essential catalytic residue Cys 229, is clearly defined in the electron density. We report that a seven residue region of loop 6, including Cys229, is tilted more than 6 A away from its position in substrate- or substrate analogue-bound structures of IMPDH, suggestive of a conformational change. The location of this loop between beta6 and alpha6 links IMPDH to a family of beta/alpha barrel enzymes known to utilize this loop as a functional lid during catalysis. Least-squares minimization, root-mean-square deviation analysis, and inspection of the molecular surface of the loop 6 region in the substrate-free B. burgdorferi IMPDH and XMP-bound Chinese hamster IMPDH show that loop 6 follows a similar pattern of hinged rigid-body motion and indicates that IMPDH may be using loop 6 to bind and sequester substrate and to recruit an essential catalytic residue.  相似文献   

17.
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.  相似文献   

18.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the critical, rate-limiting enzyme in the de novo biosynthesis pathway for guanine nucleotides. Two separate isoenzymes, designated IMPDH types I and II, contribute to IMPDH activity. An additional pathway salvages guanine through the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) to supply the cell with guanine nucleotides. In order to better understand the relative contributions of IMPDH types I and II and HPRT to normal biological function, a mouse deficient in IMPDH type I was generated by standard gene-targeting techniques and bred to mice deficient in HPRT or heterozygous for IMPDH type II. T-cell activation in response to anti-CD3 plus anti-CD28 antibodies was significantly impaired in both single- and double-knockout mice, whereas a more general inhibition of proliferation in response to other T- and B-cell mitogens was observed only in mice deficient in both enzymes. In addition, IMPDH type I(-/-) HPRT(-/0) splenocytes showed reduced interleukin-4 production and impaired cytolytic activity after antibody activation, indicating an important role for guanine salvage in supplementing the de novo synthesis of guanine nucleotides. We conclude that both IMPDH and HPRT activities contribute to normal T-lymphocyte activation and function.  相似文献   

19.
Inhibition of guanosine triphosphate(GTP)and cytidine triphosphate(CTP)biosynthetic pathways induces cells to assemble rod/ring(RR)structures,also named cytoophidia,which consist of the enzymes cytidine triphosphate synthase(CTPS)and inosine-50-monophosphate dehydrogenase 2(IMPDH2).We aim to explore the interaction of CTPS and IMPDH2 in the generation of RR structures.He La and COS-7 cells were cultured in normal conditions or in the presence of 6-diazo-5-oxo-L-norleucine(DON),ribavirin,or mycophenolic acid(MPA).Over 90%of DON-treated cells presented RR structures.In He La cells,35%of the RR structures were positive for IMPDH2alone,26%were CTPS alone,and 31%were IMPDH2/CTPS mixed,while in COS-7 cells,42%of RR were IMPDH2 alone,41%were CTPS alone,and 10%were IMPDH2/CTPS mixed.Ribavirin and MPA treatments induced only IMPDH2-based RR.Cells were also transfected with an N-terminal hemagglutinin(NHA)-tagged CTPS1 construct.Over 95%of NHA-CTPS1 transfected cells with DON treatment presented IMPDH2-based RR and almost 100%presented CTPS1-based RR;when treated with ribavirin,over 94%of transfected cells presented IMPDH2-based RR and 37%presented CTPS1-based RR,whereas 2%of untreated transfected cells presented IMPDH2-based RR and 28%presented CTPS1-based RR.These results may help in understanding the relationship between CTP and GTP biosynthetic pathways,especially concerning the formation of filamentous RR structures.  相似文献   

20.
Ye D  Lee CH  Queener SF 《Gene》2001,263(1-2):151-158
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in guanine nucleotide metabolism that has drawn attention as a drug target in several organisms. Pneumocystis carinii f. sp. carinii IMPDH mRNA (GeneBank Accession No: U42442) previously identified from cultured organisms yielded a predicted amino acid sequence about 70 amino acids shorter at the amino terminus than IMPDH from other species. Recent research has shown that the amino terminal region is important for enzyme activity, suggesting that the previous putative P. carinii IMPDH might not represent full length, functional enzyme. To test this hypothesis, RT-PCR was performed with total RNA isolated from P. carinii f. sp. carinii. Three IMPDH splicing variants were found and splicing preference was observed: P. carinii isolated from infected rat lung contained primarily splicing variant one (introns two and four deleted), but organisms from spinner flask culture contained primarily splicing variant three (all four introns deleted). Importantly, splicing variant one (GeneBank Accession No: AF196975) contained an open reading frame for 529 amino acids, a size comparable to that of other eukaryotic IMPDH forms. The other variants contained the same open reading frame (454 amino acids) previously reported. Sequence analysis and complementation studies suggest variant one represents the full length, catalytically active form of P. carinii IMPDH. The differential splicing of the enzyme may reflect a mechanism by which the organism regulates the expression of IMPDH in response to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号