首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state.  相似文献   

2.
Eleven amino acid substitutions at Val-121 of human carbonic anhydrase II including Gly, Ala, Ser, Leu, Ile, Lys, and Arg, were constructed by site-directed mutagenesis. This residue is at the mouth of the hydrophobic pocket in the enzyme active site. The CO2 hydrase activity and the p-nitrophenyl esterase activity of these CAII variants correlate with the hydrophobicity of the residue, suggesting that the hydrophobic character of this residue is important for catalysis. The effects of these mutations on the steady-state kinetics for CO2 hydration occur mainly in kcat/Km and Km, consistent with involvement of this residue in CO2 association. The Val-121----Ala mutant, which exhibits about one-third normal CO2 hydrase activity, has been studied by x-ray crystallographic methods. No significant changes in the mutant enzyme conformation are evident relative to the wild-type enzyme. Since Val-121 is at the mouth of the hydrophobic pocket, its substitution by the methyl side chain of alanine makes the pocket mouth significantly wider than that of the wild-type enzyme. Hence, although a moderately wide (and deep) pocket is important for substrate association, a wider mouth to this pocket does not seriously compromise the catalytic approach of CO2 toward nucleophilic zinc-bound hydroxide.  相似文献   

3.
Hirota S  Azuma K  Fukuba M  Kuroiwa S  Funasaki N 《Biochemistry》2005,44(30):10322-10327
Human myoglobin (Mb) possesses a unique cysteine (Cys110), whereas other mammalian Mbs do not. To investigate the effect of a cysteine residue on Mb, we introduced cysteine to various sites on the surface of sperm whale Mb (K56C, V66C, K96C, K102C, A125C, and A144C) by mutation. The cysteines were inserted near the end of alpha-helices, except for V66C, where the cysteine was introduced in the middle of an alpha-helix. Reduction of the heme was observed for each mutant metMb by incubation at 37 degrees C under carbon monoxide atmosphere, which was much faster than reduction of wild-type metMb under the same condition. Heme reduction did not occur significantly under nitrogen or oxygen atmospheres. The rate constant for heme reduction increased for higher mutant Mb concentration, whereas it did not change significantly when the CO concentration was reduced from 100% CO to 50% CO with 50% O(2). The similarity in the rate constants with different CO concentrations indicates that CO stabilizes the reduced heme by coordination to the heme iron. SDS-PAGE analysis showed that mutant Mb dimers were formed by incubation under CO atmosphere but not under air. These dimers were converted back to Mb monomers by an addition of 2-mercaptoethanol, which showed formation of a Mb dimer through a disulfide bond. The rate constant decreased in general as the heme-cysteine distance was increased, although V66C Mb exhibited a very small rate constant. Since V66 is placed in the middle of an alpha-helix, steric hindrance would occur and prevent formation of a dimer when the cysteine residues of two different V66C Mb molecules interact with each other. The rate constants also decreased for K56C and A144C Mbs presumably because of the electrostatic repulsion during dimer formation, since they are relatively charged around the inserted cysteine.  相似文献   

4.
5.
Park J  Kim J  Lee T  Lim M 《Biophysical journal》2008,94(11):L84-L86
Femtosecond vibrational spectroscopy was used to probe a functionally important dynamics and residual structure of myoglobin unfolded by 4 M guanidine HCl. The spectra of the dissociated CO indicated that the residual structure of unfolded myoglobin (Mb) forms a few hydrophobic cavities that could accommodate the dissociated ligand. Geminate rebinding (GR) of CO to the unfolded Mb is three-orders-of-magnitude faster and more efficient than the native Mb but similar to a model heme in a viscous solvent, suggesting that the GR of CO to heme is accelerated by the longer retention of the dissociated ligand near the Fe atom by the poorly-structured protein matrix of the unfolded Mb or viscous solvent. The inefficient GR of CO in native Mb, while dissociated CO is trapped in the primary heme pocket located near the active binding site, indicates that the tertiary structure of the pocket in native Mb plays a functionally significant role.  相似文献   

6.
Examination was made of CO binding reactions to four kinds of modified sperm whale myoglobin (Mb), whose heme was reconstituted by iron complexes of synthetic porphyrins such as porphine (Por), meso-tetramethylporphyrin (TMeP), meso-tetraethylporphyrin (TEtP) and meso-tetra(n-propyl)porphyrin (TnPrP), using flash photolysis and stopped-flow methods. The CO association rate was found to be 5- to 20-times and dissociation rate 10- to 36-times accelerated by replacement with synthetic hemes. These features could be explained based on characteristic structures of modified Mbs indicated by X-ray crystallography. The side chain of Arg-45 protruded from the heme vicinity into the solvent region and heme was tilted by interactions of meso-alkyl side chains with surrounding peptides, resulting in the formation of widely opened channels and pockets for ligand passage. These structural features indicate the CO ligand to more easily enter or exit from heme pockets of reconstituted myoglobins, compared to native Mb.  相似文献   

7.
Mutants of sperm whale myoglobin were constructed at position 29 (B10 in helix notation) to examine the effects of distal pocket size on the rates of ligand binding and autooxidation. Leu29 was replaced with Ala, Val, and Phe using the synthetic gene and Escherichia coli expression system of Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8961-8965). Structures of the ferric forms of Val29 and Phe29, and the oxy form of Phe29 myoglobin were determined to 1.7 A by x-ray crystallography. The ferric mutant proteins are remarkably isomorphous with the wild type protein except in the immediate vicinity of residue 29. Thus, the protein structure in the distal pocket of myoglobin can accommodate either a large "hole" (i.e. Ala or Val) or a large side chain (i.e. Phe) at position 29 without perturbation of tertiary structure. Phe29 oxymyoglobin is also identical to the native oxy protein in terms of overall structure and interactions between the bound O2 and His64, Val68, Phe43, and Ile107. The distance between the nearest side chain atom of residue 29 and the second atom of the bound oxygen molecule is 3.2 A in the Phe29 protein and 4.9 A in native myoglobin. The equilibrium constants for O2 binding to Ala29, Val29, and Leu29 (native) myoglobin are the same, approximately 1.0 x 10(6) M-1 at 20 degrees C, whereas that for the Phe29 protein is markedly greater, 15 x 10(6) M-1. This increase in affinity is due primarily to a 10-fold decrease in the O2 dissociation rate constant for the Phe29 mutant and appears to be the result of stabilizing interactions between the negative portion of the bound O2 dipole and the partially positive edge of the phenyl ring. Increasing the size of residue 29 causes large decreases in the rate of autooxidation of myoglobin: k(ox) = 0.24, 0.23, 0.055, and 0.005 h-1 for Ala29, Val29, Leu29 (native), and Phe29 myoglobin, respectively, in air at 37 degrees C. Thus, the Leu29----Phe mutation produces a reduced protein that is remarkably stable and is expressed in E. coli as 100% MbO2. The selective pressure to conserve Leu29 at the B10 position probably represents a compromise between reducing the rate of autooxidation and maintaining a large enough O2 dissociation rate constant to allow rapid oxygen release during respiration.  相似文献   

8.
Time courses for NO, O2, CO, methyl and ethyl isocyanide rebinding to native and mutant sperm whale myoglobins were measured at 20 degrees C following 17-ns and 35-ps laser excitation pulses. His64 (E7) was replaced with Gly, Val, Leu, Phe, and Gln, and Val68 (E11) was replaced with Ala, Ile, and Phe. For both NO and O2, the effective picosecond quantum yield of unliganded geminate intermediates was roughly 0.2 and independent of the amino acids at positions 64 and 68. Geminate recombination of NO was very rapid; 90% rebinding occurred within 0.5-1.0 ns for all of the myoglobins examined; and except for the Gly64 and Ile68 mutants, the fitted recombination rate parameters were little influenced by the size and polarity of the amino acid at position 64 and the size of the residue at position 68. The rates of NO recombination and ligand movement away from the iron atom in the Gly64 mutant increased 3-4-fold relative to native myoglobin. For Ile68 myoglobin, the first geminate rate constant for NO rebinding decreased approximately 6-fold, from 2.3 x 10(10) s-1 for native myoglobin to 3.8 x 10(9) s-1 for the mutant. No picosecond rebinding processes were observed for O2, CO, and isocyanide rebinding to native and mutant myoglobins; all of the observed geminate rate constants were less than or equal to 3 x 10(8) s-1. The rebinding time courses for these ligands were analyzed in terms of a two-step consecutive reaction scheme, with an outer kinetic barrier representing ligand movement into and out of the protein and an inner barrier representing binding to the heme iron atom by ligand occupying the distal portion of the heme pocket. Substitution of apolar amino acids for His64 decreased the absolute free energies of the outer and inner kinetic barriers and the well for non-covalently bound O2 and CO by 1 to 1.5 kcal/mol, regardless of size. In contrast, the His64 to Gln mutation caused little change in the barrier heights for all ligands, showing that the polar nature of His64 inhibits both the bimolecular rate of ligand entry into myoglobin and the unimolecular rate of binding to the iron atom from within the protein. Increasing the size of the position 68(E11) residue in the series Ala to Val (native) to Ile caused little change in the rate of O2 migration into myoglobin or the equilibrium constant for noncovalent binding but did decrease the unimolecular rate for iron-O2 bond formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The direct oxygen sensor protein isolated from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of O(2), CO, or NO to a reduced heme significantly enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report stationary and time-resolved resonance Raman spectra of the wild-type and several mutants (Glu-93 --> Ile, Met-95 --> Ala, Arg-97 --> Ile, Arg-97 --> Ala, Arg-97 --> Glu, Phe-113 --> Leu, and Phe-113 --> Thr) of the heme-containing PAS domain of Ec DOS. For the CO- and NO-bound forms, both the hydrogen-bonded and non-hydrogen-bonded conformations were found, and in the former Arg-97 forms a hydrogen bond with the heme-bound external ligand. The resonance Raman results revealed significant interactions of Arg-97 and Phe-113 with a ligand bound to the sixth coordination site of the heme and profound structural changes in the heme propionates upon dissociation of CO. Mutation of Phe-113 perturbed the PDE activities, and the mutation of Arg-97 and Phe-113 significantly influenced the transient binding of Met-95 to the heme upon photodissociation of CO. This suggests that the electrostatic interaction of Arg-97 and steric interaction of Phe-113 are crucial for regulating the competitive recombination of Met-95 and CO to the heme. On the basis of these results, we propose a model for the role of the heme propionates in communicating the heme structural changes to the protein moiety.  相似文献   

10.
Brunori M  Gibson QH 《EMBO reports》2001,2(8):674-679
Small globular proteins contain internal cavities and packing defects that reduce thermodynamic stability but seem to play a role in controlling function by defining pathways for the diffusion of the ligand/substrate to the active site. In the case of myoglobin (Mb), a prototype for structure–function relationship studies, the photosensitivity of the adduct of the reduced protein with CO, O2 and NO allows events related to the migration of the ligand through the matrix to be followed. The crystal structures of intermediate states of wild-type (wt) and mutant Mbs show the photolysed CO to be located either in the distal heme pocket (primary docking site) or in one of two alternative cavities (secondary docking sites) corresponding to packing defects accessible to an atom of xenon. These results convey the general picture that pre-existing internal cavities are involved in controlling the dynamics and reactivity of the reactions of Mb with O2 and other ligands, including NO.  相似文献   

11.
Presecretory signal peptides of 39 proteins from diverse prokaryotic and eukaryotic sources have been compared. Although varying in length and amino acid composition, the labile peptides share a hydrophobic core of approximately 12 amino acids. A positively charged residue (Lys or Arg) usually precedes the hydrophobic core. Core termination is defined by the occurrence of a charged residue, a sequence of residues which may induce a beta-turn in a polypeptide, or an interruption in potential alpha-helix or beta-extended strand structure. The hydrophobic cores contain, by weight average, 37% Leu: 15% Ala: 10% Val: 10% Phe: 7% Ile plus 21% other hydrophobic amino acids arranged in a non-random sequence. Following the hydrophobic cores (aligned by their last residue) a highly non-random and localized distribution of Ala is apparent within the initial eight positions following the core: (formula; see text) Coincident with this observation, Ala-X-Ala is the most frequent sequence preceding signal peptidase cleavage. We propose the existence of a signal peptidase recognition sequence A-X-B with the preferred cleavage site located after the sixth amino acid following the core sequence. Twenty-two of the above 27 underlined Ala residues would participate as A or B in peptidase cleavage. Position A includes the larger aliphatic amino acids, Leu, Val and Ile, as well as the residues already found at B (principally Ala, Gly and Ser). Since a preferred cleavage site can be discerned from carboxyl and not amino terminal alignment of the hydrophobic cores it is proposed that the carboxyl ends are oriented inward toward the lumen of the endoplasmic reticulum where cleavage is thought to occur. This orientation coupled with the predicted beta-turn typically found between the core and the cleavage site implies reverse hairpin insertion of the signal sequence. The structural features which we describe should help identify signal peptides and cleavage sites in presumptive amino acid sequences derived from DNA sequences.  相似文献   

12.
We replaced protoheme-IX in native myoglobin with the symmetric protohemes-III and -XIII, in order to investigate the role of heme vinyl-globin contacts on Mb function. The UV-visible spectra and the resonance Raman spectra in the high-frequency region (containing oxidation, spin, and coordination state marker lines) of the two reconstituted Mbs were very similar. However, the signal intensity of the Soret band in the CD spectra and the resonance Raman lines for vinyl bending modes in the low-frequency region notably differed, thereby reflecting altered heme peripheral contacts. The redox potentials, formal heterogeneous electron-transfer rates, and thermal denaturation temperatures of the two reconstituted Mbs were also indistinguishable. In addition, the oxygen binding properties of the ferrous deoxy Mbs were comparable. These results demonstrate that altered heme vinyl-globin interactions only slightly affect the physical properties of Mb. It is therefore likely that the orientation of protoheme-IX about the alpha,gamma-axis in the heme pocket is not necessarily a crucial factor for oxygen binding to native Mb.  相似文献   

13.
The ability of myoglobin to bind oxygen reversibly depends critically on retention of the heme prosthetic group. Globin side chains at the Leu(89)(F4), His(97)(FG3), Ile(99)(FG5), and Leu(104)(G5) positions on the proximal side of the heme pocket strongly influence heme affinity. The roles of these amino acids in preventing heme loss have been examined by determining high resolution structures of 14 different mutants at these positions using x-ray crystallography. Leu(89) and His(97) are important surface amino acids that interact either sterically or electrostatically with the edges of the porphyrin ring. Ile(99) and Leu(104) are located in the interior region of the proximal pocket beneath ring C of the heme prosthetic group. The apolar amino acids Leu(89), Ile(99), and Leu(104) "waterproof" the heme pocket by forming a barrier to solvent penetration, minimizing the size of the proximal cavity, and maintaining a hydrophobic environment. Substitutions with smaller or polar side chains at these positions result in exposure of the heme to solvent, the appearance of crystallographically defined water molecules in or near the proximal pocket, and large increases in the rate of hemin loss. Thus, the naturally occurring amino acid side chains at these positions serve to prevent hydration of the His(93)-Fe(III) bond and are highly conserved in all known myoglobins and hemoglobins.  相似文献   

14.
Two different parts of Candida antarctica lipase B (stereospecificity pocket at the bottom of the active site and hydrophobic tunnel leading to the active site) were redesigned by single- or double-point mutations, in order to better control and improve enzyme enantioselectivity toward secondary alcohols. Single-point isosteric mutations of Ser47 and Thr42 situated in the stereospecificity pocket gave rise to variants with doubled enantioselectivity toward pentan-2-ol, in solid/gas reactor. Besides, the width and shape of the hydrophobic tunnel leading to the active site was modified by producing the following single-point mutants: Ile189Ala, Leu278Val and Ala282Leu. For each of these variants a significant modification of enantioselectivity was observed compared to wild-type enzyme, indicating that discrimination of the enantiomers by the enzyme could also arise from their different accessibilities from the enzyme surface to the catalytic site.  相似文献   

15.
16.
1H-NMR spectra of deoxy myoglobins (Mbs) from shark (Galeorhinus japonicus), horse, and sperm whale have been studied to gain insights into their active site structure. It has been demonstrated for the first time that nuclear Overhauser effect (NOE) can be observed between heme peripheral side-chain proton resonances of these paramagnetic complexes. Val-E11 methyl and His-F8 C delta H proton resonances of these Mbs were also assigned from the characteristic shift and line width. The hyperfine shift of the former resonance was used to calculate the magnetic anisotropy of the protein. The shift analysis of the latter resonance, together with the previously assigned His-F8 N delta H proton resonance, revealed that the strain on the Fe-N epsilon bond is in the order horse Mb approximately whale Mb < shark Mb and that the hydrogen bond strength of the His-F8 N delta H proton to the main-chain carbonyl oxygen in the preceding turn of the F helix is in the order shark Mb < horse Mb < whale Mb. Weaker Feporphyrin interaction in shark Mb was manifested in a smaller shift of the heme methyl proton resonance and appears to result from distortion of the coordination geometry in this Mb. Larger strain on the Fe-N epsilon bond in shark Mb should be to some extent attributed to its lowered O2 affinity (P50 = 1.1 mmHg at 20 degrees C), compared to whale and horse Mbs.  相似文献   

17.
Myoglobin (Mb) uses strong electrostatic interaction in its distal heme pocket to regulate ligand binding. The mechanism of regulation of ligand binding in soybean leghemoglobin a (Lba) has been enigmatic and more so due to the absence of gaseous ligand bound atomic resolution three‐dimensional structure of the plant globin. While the 20‐fold higher oxygen affinity of Lba compared with Mb is required for its dual physiological function, the mechanism by which this high affinity is achieved is only emerging. Extensive mutational analysis combined with kinetic and CO‐FT‐IR spectroscopic investigation led to the hypothesis that Lba depended on weakened electrostatic interaction between distal HisE7 and bound ligand achieved by invoking B10Tyr, which itself hydrogen bonds with HisE7 thus restricting it in a single conformation detrimental to Mb‐like strong electrostatic interaction. Such theory has been re‐assessed here using CO‐Lba in silico model and molecular dynamics simulation. The investigation supports the presence of at least two major conformations of HisE7 in Lba brought about by imidazole ring flip, one of which makes hydrogen bonds effectively with B10Tyr affecting the former's ability to stabilize bound ligand, while the other does not. However, HisE7 in Lba has limited conformational freedom unlike high frequency of imidazole ring flips observed in Mb and in TyrB10Leu mutant of Lba. Thus, it appears that TyrB10 limits the conformational freedom of distal His in Lba, tuning down ligand dissociation rate constant by reducing the strength of hydrogen bonding to bound ligand, which the freedom of distal His of Mb allows. Proteins 2015; 83:1836–1848. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.  相似文献   

19.
A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  相似文献   

20.
In the elucidation of structural requirements of heme vicinity for hydrogen peroxide activation, we found that the replacement of His-64 of myoglobin (Mb) with a negatively charged aspartate residue enhanced peroxidase and peroxygenase activities by 78- and 580-fold, respectively. Since residue 68 is known to influence the ligation of small molecules to the heme iron, we constructed H64D/V68X Mb bearing Ala, Ser, Leu, Ile, and Phe at position 68 to improve the oxidation activity. The Val-68 to Leu mutation of H64D Mb accelerates the reaction with H(2)O(2) to form a catalytic species, called compound I, and improves the one-electron oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (i.e., peroxidase activity) approximately 2-fold. On the other hand, H64D/V68I Mb oxygenates thioanisole 2.7- and 1600-fold faster than H64D and wild-type Mb, respectively. In terms of the enantioselectivity, H64D/V68A and H64D/V68S Mb were good chiral catalysts for thioanisole oxidation and produced the (R)-sulfoxide dominantly with 84% and 88% ee, respectively [Kato, S., et al. (2002) J. Am. Chem. Soc. 124, 8506-8507]. On the contrary, the substitution of Val-68 in H64D Mb with an isoleucine residue alters the dominant sulfoxide product from the (R)- to the (S)-isomer. The crystal structures of H64D/V68A and H64D/V68S Mb elucidated in this study do not clearly indicate residues interacting with thioanisole. However, comparison of the active site structures provides the basis to interpret the changes in oxidation activity: (1) direct steric interactions between residue 68 and substrates (i.e., H(2)O(2), ABTS, thioanisole) and (2) the polar interactions between tightly hydrogen-bonded water molecules and substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号