首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The health concerns have been raised following the enormous increase in the use of wireless mobile telephones throughout the world. This investigation had been taken, with the motive to find out whether mobile phone radiations cause any in vivo effects on the frequency of micronucleated exfoliated cells in the exposed subjects. A total of 109 subjects including 85 regular mobile phone users (exposed) and 24 non-users (controls) had participated in this study. Exfoliated cells were obtained by swabbing the buccal-mucosa from exposed as well as sex-age-matched controls. One thousand exfoliated cells were screened from each individual for nuclear anomalies including micronuclei (MN), karyolysis (KL), karyorrhexis (KH), broken egg (BE) and binucleated (BN) cells. The average daily duration of exposure to mobile phone radiations is 61.26 min with an overall average duration of exposure in term of years is 2.35 years in exposed subjects along with the 9.84+/-0.745 micronucleated cells (MNCs) and 10.72+/-0.889 total micronuclei (TMN) as compared to zero duration of exposure along with average 3.75+/-0.774 MNC and 4.00+/-0.808 TMN in controls. The means are significantly different in case of MNC and TMN at 0.01% level of significance. The mean of KL in controls is 13.17+/-2.750 and in exposed subjects is 13.06+/-1.793. The value of means of KH in exposed subjects (1.84+/-0.432) is slightly higher than in controls (1.42+/-0.737). Mean frequency of broken egg is found to be more in exposed subjects (0.65+/-0.276) as compared to controls (0.50+/-0.217). Frequency of presence of more than one nucleus in a cell (binucleated) is also higher in exposed (2.72+/-0.374) in comparison to controls (0.67+/-0.231). Although there is a slight increase in mean frequency of KH, BE and BN in exposed subjects but the difference is not found statistically significant. Correlation between 0-1, 1-2, 2-3 and 3-4 years of exposure and the frequency of MNC and TMN has been calculated and found to be positively correlated.  相似文献   

2.
Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years±11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv±49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7‰±5.2 versus 6.6‰±3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C−MN) in exposed subjects than in controls (8.5‰±4.9 versus 2.2‰±1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C−MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.  相似文献   

3.
Dental laboratory technicians may be exposed to metal alloys that are used in the production of crowns, bridges and removable partial dentures. These alloys consist of 35–65% cobalt, 20–30% chromium, 0–30% nickel, and small amounts of molybdenum, silica, beryllium, boron and carbon. The aim of this study was to assess whether dental technicians are occupationally exposed to chromium, cobalt and nickel, by analyzing urinary excretion levels of these metals and to investigate the genotoxic effects of occupational exposure associated with dental prostheses production operations by analyzing cytokinesis-blocked micronucleus (CB-MN) frequencies in peripheral lymphocytes and micronucleus (MN) frequencies in exfoliated nasal cells from 27 dental laboratory technicians and 15 control subjects. The differences in the urinary excretion of metals between technicians and controls were statistically significant. The mean (±S.D.) CB-MN frequencies (‰) in peripheral lymphocytes were 4.00 (±2.98) among the dental technicians and 1.40 (±1.30) among the controls, a statistically significant difference (P<0.005). The mean (±S.D.) MN frequencies (‰) in nasal cells were 3.50 (±1.80) among the dental technicians and 1.19 (±0.53) among the controls, which was also a statistically significant difference (P<0.005). There was a significant correlation between duration of exposure and MN frequencies in lymphocytes (r=0.642, P<0.01), but not in nasal cells of technicians. Our data reveal that in vivo exposure to chromium, nickel and cobalt metals is evident and that this occupational exposure may contribute to the observed genotoxic damage in two types of cells, e.g. lymphocytes and exfoliated nasal cells. However, it cannot be determined which compound(s) are responsible for the genotoxic damage observed in this study.  相似文献   

4.
Increased micronucleated cell rates, dicentric chromosomes, and other chromosomal damages have been reported in lymphocytes of cancer patients prior to the initiation of chemotherapy, and/or radiotherapy. The cause of these chromosomal damages in these lymphocytes remains unclear. In the present work, we investigated whether these micronuclei mainly reflect structural or numerical chromosomal aberrations by applying the cytokinesis-blocked micronucleus (CBMN) assay in combination with fluorescent in situ hybridization (FISH) of a DNA centromeric probe on blood samples of 10 untreated cancer patients (UCPs), and 10 healthy subjects (HSs). Micronucleated binucleated lymphocyte rate was significantly increased in patients (mean±S.D.: 19.0‰±14.1 versus 9.2‰±4.6 in controls). Trinucleated cytokinesis-blocked cells were not significantly higher in patients than in controls. Acentromeric, centromeric, and multicentromeric micronucleus levels were two-fold higher in patients than in controls, but the difference was significant only with acentromeric micronuclei. The percentage of micronuclei containing one or more centromeres averaged 69.2, and 71.5% in patients, and controls, respectively. The percentage of micronuclei containing several centromeres was 44.7% in patients, and 54.6% in controls. Among centromere-positive micronuclei, the percentage of micronuclei containing several centromeres averaged 59.7% in patients, and 75.4% in controls. These results indicate that genetic instability in peripheral blood lymphocytes of UCPs occurs because of enhanced chromosome breakage. However, a substantial proportion of this genetic instability occurs because of defects in chromosome segregation.  相似文献   

5.
4,4′-Methylenebis-(2-chloroaniline) (MOCA) is used in the manufacture of polyurethane. The IARC classifies MOCA as a probable human carcinogen. Suggested changes to guidelines for health surveillance of MOCA-exposed workers in Australia include a reduction in acceptable levels of urinary MOCA to below 15 μmol/mol creatinine. Twelve male workers aged 24 and 42 years were recruited into this study from four work locations where MOCA is used. Exfoliated urothelial cells from prework urine samples on a midweek work day were assessed for micronucleus (MN) frequencies. Postwork urine samples were analysed for total MOCA. Blood samples collected on the same day were cultured for 96 h and cytochalasin-B-blocked cells were scored for MN. Eighteen male control subjects (23–59 years) provided corresponding urine and blood samples. Median urinary MOCA concentrations were 6.5 μmol/mol creatinine (range 0.4–48.6 μmol/mol creatinine) in postwork samples of MOCA-exposed workers. MOCA was not detected in urine of control workers. Mean MN frequencies were higher in urothelial cells and lymphocytes of MOCA workers (14.27±0.56 and 13.25±0.48 MN/1000 cells) than in controls (6.90±0.18 and 9.24±0.29 MN/1000 cells). The mean number of micronucleate cells was also higher in both tissues of exposed workers (9.69±0.32 and 8.54±0.14 MN cells/1000 cells) than in controls (5.18±0.11 and 5.93±0.13 MN cells/1000). There was no correlation between postwork urinary MOCA concentrations and MN frequencies in either tissue. This study suggests that exposures to MOCA in South Australia are similar to those of a decade ago and are at levels similar to those currently acceptable in Australia. These are associated with genotoxic effects in urothelial cells and peripheral blood lymphocytes. It may be prudent to reduce MOCA exposures in line with proposed guidance values.  相似文献   

6.
A study was conducted to evaluate the genotoxic effect of occupational exposure to formaldehyde on pathology and anatomy laboratory workers. The level of exposure to formaldehyde was determined by use of passive air-monitoring badges clipped near the breathing zone of 59 workers for a total sampling time of 15min or 8h. To estimate DNA damage, a chemiluminescence microplate assay was performed on 57 workers before and after a 1-day exposure. Assessment of chromosomal damage was carried out by use of the cytokinesis-blocked micronucleus assay (CBMN) in peripheral lymphocytes of 59 exposed subjects in comparison with 37 controls matched for gender, age, and smoking habits. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 18 exposed subjects and 18 control subjects randomized from the initial populations. Mean concentrations of formaldehyde were 2.0 (range <0.1-20.4ppm) and 0.1ppm (range <0.1-0.7ppm) for the sampling times of 15min and 8h, respectively. No increase in DNA damage was detected in lymphocytes after a one-workday exposure. However, the frequency of binucleated micronucleated cells was significantly higher in pathologists/anatomists than in controls (16.9 per thousand+/-9.3 versus 11.1 per thousand+/-6.0, P=0.001). The frequency of centromeric micronuclei was higher in exposed subjects than in controls (17.3 per thousand+/-11.5 versus 10.3 per thousand+/-7.1) but the difference was not significant. The frequency of monocentromeric micronuclei was significantly higher in exposed subjects than in controls (11.0 per thousand+/-6.2 versus 3.1 per thousand+/-2.4, P<0.001), while that of the acentromeric micronuclei was similar in exposed subjects and controls (3.7 per thousand+/-4.2 and 4.1 per thousand+/-2.7, respectively). The enhanced chromosomal damage (particularly chromosome loss) in peripheral lymphocytes of pathologists/anatomists emphasizes the need to develop safety programs.  相似文献   

7.
The aim of this study was to assess occupationally induced chromosomal damage in a large population of hospital workers exposed to low doses of ionizing radiation. We used the cytokinesis-block micronucleus (CBMN) assay in the peripheral lymphocytes of 132 exposed workers compared with 69 controls matched for gender, age and smoking habits. The CBMN assay was combined with fluorescence in situ hybridization with a human pan-centromeric DNA probe in 32 exposed subjects and 30 controls randomly chosen from the initial populations. Occupational dosimetry records were collected over the last 10-year period and revealed very low exposure levels. The average binucleated micronucleated cell rate (BMCR) was significantly higher in the exposed subjects than in the controls (14.9 per thousand+/-8.1 versus 11.8 per thousand+/-6.5; P=0.011). About one-third of the micronuclei were centromere-negative in the exposed and control groups. BMCR significantly positively correlated with donor age in the exposed population; this correlation was at the border of significance in the control group. In the two groups, BMCR was significantly greater in females than in males, and the significant correlation between age and BMCR was observed in the female population, but not in the male one. No effect of smoking habits emerged. Univariate analysis revealed a possible influence of familial cancer history and diagnostic medical radiation dose (estimated from examinations reported in the questionnaire) on BMCR. Multiple regression analysis, taking into account all the previous confounding factors, showed that only occupational exposure status, gender and age had a significant effect on BMCR. In conclusion, the present study shows that chromosomal damage leading to micronucleated lymphocytes is more frequent in hospital workers exposed to ionizing radiation than in controls, despite the very low levels of exposure.  相似文献   

8.
trans,trans-Muconic acid (1,3-butadiene-1,4-dicarboxylic acid, MA), a minor urinary metabolite of benzene exposure, was determined, after clean-up by solid-phase anion-exchange chromatography, by reversed-phase HPLC on a C18 column (5 × 0.46 cm I.D., 3 μm particle size), using formic acid-tetrahydrofuran-water (14:17:969) as mobile phase and UV detection at 263 nm. The recovery of MA from spiked urine was > 95% in the 50–500 μg/l range; the quantification limit was 6 μg/l; day-to-day precision, at 300 μg/l, C.V. = 9.2%; the run time was less than 10 min. Urinary MA excretion was measured in two spot urine samples of 131 benzene environmentally exposed subjects: midday values obtained in non-smokers (mean±S.D.=77±54 μg/l, N = 82) were statistically different from those of smoerks (169±85 μg/l, N = 30) (P<0.0001); each group showed a statistically significant increase between MA excretion in midday over morning samples. Moreover, in subjects grouped according to tobacco-smoke exposure level, median values of MA were positively associated with and increased with daily smoking habits.  相似文献   

9.
Inhalation of asbestos, a mineral extensively used in a variety of applications, is strongly associated with malignant mesothelioma (MM), a fatal cancer of the pleura. Soluble mesothelin-related peptides (SMRP) are a promising biomarker suggested for the screening of MM in healthy asbestos-exposed subjects. In the present study a comparison of micronucleus (Mn) frequencies in peripheral blood lymphocytes (PBL) between 44 asbestos-exposed and 22 control individuals has been performed, and the correlation with serum SMRP has been examined. SMRP levels were found to be significantly higher in subjects exposed to asbestos and in their various subgroups than in controls. Concerning micronucleated lymphocytes, a statistically significant difference from controls was seen in the percentages of both micronucleated mononucleated lymphocytes (MnMNL) and micronucleated binucleated lymphocytes (MnBNL), but the difference was markedly higher for the percentage of micronucleated polynucleated lymphocytes (MnPNL). With respect to the correlation between the frequency of the three types of micronucleated lymphocytes and serum-SMRP values of asbestos-exposed subjects, it was statistically significant for MnMNL, but not for MnBNL and MnPNL.  相似文献   

10.
In the present work, the micronuclei (MN) test was performed in buccal mucosal samples from patients with cancer, with (pre- and post-treatment) and without genotoxic chemotherapy (GC), identified micronucleated cells (MNC) and nuclear abnormalities (binucleated cells (BN), pycnosis (PN), "broken-egg" (BE), condensed chromatin (CC), karyorrhexis (KR), and karyolysis (KL)).The objective was to evaluate the genotoxicity of cisplatin+5-Fluorouracil (5-FU), carboplatin (CBP)+5-Fluorouracil, and ifosfamide (IFO)+epirubicine (EPI) regimens.The ifosfamide+epirubicine regimen described here produced a micronucleogenic effect, whereas the regimens using platinum compounds were cytotoxic for buccal mucosal cells, which probably explains the absence of increase of micronucleated cells in these samples compared with basal levels.In patients with cancer (with and without genotoxic chemotherapy), the numbers of micronucleated cells, pycnosis and karyolysis increased, together with a decrease in binucleated cells and chromatin-condensed. On the other hand, as consequence of the cytotoxicity of the drugs, the number of binucleated cells decreased and the number of karyolytic cells increased. These results could be used as a cytotoxicity marker in future studies for different drugs.  相似文献   

11.
Thermoelectric power-plant workers are constantly exposed to high levels of potentially genotoxic gaseous substances, such as volatile organic compounds (VOCs) from the combustion of fuel oil or the processing of naphtha. The aim of the present study was to estimate the association between such occupational exposure and the frequency of micronucleated cells and cells with other nuclear anomalies. Buccal epithelial cells were collected from a total of 44 power-plant workers (exposed group) and 47 administrative workers (non-exposed group), and examined for the frequency of micronucleated cells (MNC) and of cells with other nuclear anomalies (ONA: pyknosis, karyolysis, and karyorrhexis) by means of the micronucleus assay. The frequencies of MNC and ONA per 1000 cells in the exposed group (1.8‰ and 82.4‰, respectively) were significantly higher than in the non-exposed group (0.2‰ and 58.3‰, respectively). The exposed group had a twelve-fold increase in risk for formation of MNC compared with non-exposed individuals (RR=12.1; 95% CI, 5.0-29.2; P<0.001). The confounding factors analyzed (age, smoking status, alcohol consumption, and mouthwash use) did not show any significant association with the frequency of MNC or ONA. The findings of this study show that workers from power plants exposed to VOCs have a significantly elevated risk for DNA damage. Therefore, bio-monitoring of DNA damage is recommended for this group of workers.  相似文献   

12.
Thin layer chromatography was used to analyze the glucose and maltose concentrations of the digestive gland–gonad complex (DGG) of uninfected-estivated Biomphalaria glabrata snails and estivated B. glabrata patently infected with Schistosoma mansoni. All snails were estivated in a most chamber at a relative humidity of 98 ± 1% and a temperature of 23 ± 1 °C for 14 days. Carbohydrates were extracted from the DGG with 70% aqueous ethanol, and extracts were analyzed on silica gel preadsorbent plates using ethyl acetate–glacial acetic acid–methanol–water (60:15:15:10) mobile phase, α-naphthol–sulfuric acid detection reagent, and quantification by densitometry. The concentrations of glucose and maltose were significantly reduced in both uninfected-estivated snails and infected-estivated snails.  相似文献   

13.
Blood vessel growth is regulated by angiogenic and angiostatic CXC chemokines, and radiation is a vasculogenic stimulus. We investigated the effect of radiation on endothelial cell chemokine signaling, receptor expression, and migration and apoptosis. Human umbilical vein endothelial cells were exposed to a single fraction of 0, 5, or 20 Gy of ionizing radiation (IR). All vasculogenic chemokines (CXCL1–3/5–8) increased 3–13-fold after 5 or 20 Gy IR. 20 Gy induced a marked increase (1.6–4-fold) in angiostatic CXC chemokines. CXCR4 expression increased 3.5 and 7-fold at 48 h after 5 and 20 Gy, respectively. Bone marrow progenitor cell chemotaxis was augmented by conditioned media from cells treated with 5 Gy IR. Whereas 5 Gy markedly decreased intrinsic cell apoptosis (0 Gy = 16% ± 3.6 vs. 5 Gy = 4.5% ± 0.3), 20 Gy increased it (21.4% ± 1.2); a reflection of pro-survival angiogenic chemokine expression. Radiation induces a dose-dependent increase in pro-angiogenic CXC chemokines and CXCR4. In contrast, angiostatic chemokines and apoptosis were induced at higher (20 Gy) radiation doses. Cell migration improved significantly following 5 Gy, but not 20 Gy IR. Collectively, these data suggest that lower doses of IR induce an angiogenic cascade while higher doses produce an angiostatic profile.  相似文献   

14.
Hairdressers are exposed daily to chemical substances, such as dyes, chemical straighteners and curling chemicals, which can be absorbed, inhaled or possibly ingested. We analyzed the frequency of micronuclei (MNC) in exfoliated cells of the buccal mucosa of 50 hairdressers and 50 controls in Pelotas, RS, Brazil. An assessment was carried out on the incidence of MNC, binucleated cells (BNC), broken egg cells (BEC), budding cells (BC), and the sum of anomalies (SA), in 2000 cells per individual. The data were analyzed with SPSS, using the Mann-Whitney U-test, α = 0.05. The mean number of anomalies in hairdressers was 2.02 ± 3.60 MNC; 8.50 ± 5.07 BNC; 9.06 ± 3.83 BEC; 0.32 ± 0.62 BC, and 19.90 ± 9.61 SA; in controls it was 0.36 ± 1.06 MNC; 5.20 ± 4.73 BNC; 5.92 ± 2.67 BEC; 0.10 ± 0.36 BC, and 11.58 ± 6.67 SA; the differences for all parameters were significant. The non-occupational factors did not significantly influence the alterations. A significant increase of BEC (P = 0.003) was observed in the hairdressers and SA (P = 0.033) in females. The lowest income level influenced MNC (P = 0.044), and the habit of not smoking influenced SA (P = 0.020). We concluded that exposure to substances used by hairdressers is genotoxic for men.  相似文献   

15.
The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9 h. A positive control group was treated during 20 min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9 h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9 h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.  相似文献   

16.
The radiofrequency electromagnetic radiation emitted by smart phones on biological systems has wide media coverage and public concern in recent years. The aim of this study was to explore the effects of fourth-generation cell phone radiation exposure on hematological (Total leukocyte count, Total erythrocyte count, and hemoglobin %), biochemical (Serum creatinine) parameters, and histopathological changes in the kidney and testis of Swiss albino mice. A total of 30 male Swiss albino mice weighing 45–65 g was randomly divided into three groups (n = 10). The first group A was the control group, the second group B, was exposed to 40 minutes of mobile phone radiation daily, the third group C was exposed to 60 minutes of radiation daily from two 2400 Megahertz fourth-generation connected mobile phones for 60 days, respectively. The electromagnetic radiation frequency radiometer measured the frequency of electromagnetic radiation emitted from cell phones. The specific absorption rate was calculated as 0.087 W/kg. The control group was kept under similar conditions, but the electromagnetic field was not given for the same period. All the mice were sacrificed at the end of the experiment. The blood samples were collected for hematobiochemical study, and then kidney and testis tissues were collected for histopathological study. Results of the study showed that the body weight and total erythrocyte count values were significantly (p < 0.05) decreased while total leukocyte count, hemoglobin %, and serum creatinine values were significantly (p < 0.05) increased in both the radiation exposure groups relative to the control group. Histopathological observation showed the kidney of 60 minutes exposed mice interstitial inflammation that causes marked mononuclear cellular infiltration compared to the 40 minutes and control mice. Compared to control mice, histopathological examinations of testicular tissue from the exposed mice, showed irregular in shapes and non-uniform sizes and fewer spermatogenic cells layer that leads to the larger lumen in the seminiferous tubules. It is concluded that fourth-generation cell phone radiation exposure may affect blood hemostasis and inflammation of mice's kidney and testis tissue. Based on these studies, it is important to increase public consciousness of potential adverse effects of mobile phone radiofrequency electromagnetic radiation exposure.  相似文献   

17.
In vitrified solutions, ice can form during warming if the concentration of the cryoprotectant is insufficient. For the cryopreservation of cells, ice is innocuous when it remains outside the cell, but intracellular ice (ICI) is lethal. We tried to estimate the conditions in which ICI forms in vitrified mouse morulae during warming. The solutions for the experiments (EFS10–EFS50) contained 10–50% ethylene glycol plus Ficoll plus sucrose. When vitrified EFS20, EFS30, and EFS40 were kept at −80 °C, they remained transparent after 3 min, but turned opaque after 60 min (EFS20, EFS30) or 24 h (EFS40). Morulae were vitrified with EFS solutions after exposure for 30–120 s at 25 °C. They were warmed by various methods and survival was assessed in culture. After rapid warming (control), survival was high with EFS30 (79–93%) and EFS40 (96–99%). After slow warming, survival decreased with both EFS30 (48–62%) and EFS40 (44–64%). This must be from the formation of ICI. To examine the temperature at which ICI formed during slow warming, vitrified embryos were kept at various sub-zero temperatures during warming. Survival with EFS30 and EFS40 decreased on keeping samples for 3 min at −80 (25–75%), −60 (7–49%), −40 (0–41%), or −20 °C (26–60%). When samples were kept at −80 °C for 24 h, the survival decreased to 0–14%. These results suggest that ICI forms at a wide range of temperatures including −80 and −20 °C, more likely between −60 and −40 °C, and the ice forms not only quickly but also slowly.  相似文献   

18.
Blood cultures from human volunteers were exposed to an acute 1.9 GHz pulse-modulated radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures during the exposure was maintained at 37.0 +/- 0.5 degrees C. DNA damage was quantified in leukocytes by the alkaline comet assay and the cytokinesis-block micronucleus assay. When compared to the sham-treated controls, no evidence of increased primary DNA damage was detected by any parameter for any of the RF-field-exposed cultures when evaluated using the alkaline comet assay. Furthermore, no significant differences in the frequency of binucleated cells, incidence of micronucleated binucleated cells, or total incidence of micronuclei were detected between any of the RF-field-exposed cultures and the sham-treated control at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz pulse-modulated RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

19.
In the present work, the micronuclei (MN) test was performed in buccal mucosal samples from patients with cancer, with (pre- and post-treatment) and without genotoxic chemotherapy (GC), identified micronucleated cells (MNC) and nuclear abnormalities (binucleated cells (BN), pycnosis (PN), "broken-egg" (BE), condensed chromatin (CC), karyorrhexis (KR), and karyolysis (KL). The objective was to evaluate the genotoxicity of cisplatin + 5-Fluorouracil (5-FU), carboplatin (CBP) + 5-Fluorouracil, and ifosfamide (IFO) + epirubicine (EPI) regimens. The ifosfamide + epirubicine regimen described here produced a micronucleogenic effect, whereas the regimens using platinum compounds were cytotoxic for buccal mucosal cells, which probably explain the absence of increase of micronucleated cells in these samples compared with basal levels. In patients with cancer (with and without genotoxic chemotherapy), the numbers of MNC, PN, KR, total nuclear abnormalities and KL increased, together with a decrease in BN cells and CC. On the other hand, as consequence of the cytotoxicity of the drugs, the number of binucleated cells decreased and the number of karyolytic cells increased. These results could be used as a cytotoxicity marker in the future studies for different drugs.  相似文献   

20.
Wang CL  Teo KY  Han B 《Cryobiology》2008,57(1):52-59
One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl–water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl–glycine–water mixture has two distinct eutectic phase change events – binary eutectic solidification of water–glycine, and ternary eutectic solidification of NaCl–glycine–water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n = 9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to −8.5 °C decreased from 85.9 ± 1.8% to 38.5 ± 1.0% on the occurrence of binary eutectic solidification of glycine–water (n = 3 for each group). With 20% glycine supplement, the viability of the cells frozen to −8.5 °C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to −15 °C, the viability drastically decreased from 62.5 ± 2.0% to 3.6 ± 0.7% (n = 3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water–glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号