首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.  相似文献   

2.
Han J  Liu YL  Fan W  Chao J  Hou YQ  Yin YL  Zhu HL  Meng GQ  Che ZQ 《Amino acids》2009,37(4):643-651
A study was conducted to investigate the effects of L-arginine (Arg) on performance and immune function in cyclophosphamide (CY) immunosuppressed weaned pigs. The weaned pigs were allotted randomly into one of three treatments, including: (1) non-challenged control; (2) CY-challenged group; and (3) CY + 0.5% Arg. On days 14 and 21 of the trial, pigs were injected with CY or sterile saline. Blood samples were obtained on days 21 and 28 of the trial for further analysis. On day 28, delayed-type hypersensitivity reaction was evaluated. Arg alleviated the decrease of average daily gain (P < 0.05) induced by CY challenge from days 21 to 28. Arg mitigated the CY-induced decrease of total white blood cell numbers (P < 0.05) on day 28 and improved the lymphocyte percentage on day 21 (P < 0.05). Arg increased the delayed-type hypersensitivity reaction (P < 0.05), and attenuated the decrease of bovine serum albumin antibody level caused by CY treatment (P < 0.05) on day 28. In addition, Arg elevated the levels of serum interleukin-2 and interferon-gamma (P < 0.05) on day 28, and mitigated the decrease of serum interferon-gamma level on day 21 (P < 0.05). These results indicate that Arg supplementation has beneficial effects in attenuating the immunosuppressive effects of CY challenge, therefore improving growth performance of young pigs.  相似文献   

3.
We have made a preliminary analysis of the results about the effects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identification of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698–705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments.  相似文献   

4.
Eicosapentaenoic acid (EPA) is a member of the family of n-3 polyunsaturated fatty acids (PUFAs) that are clinically used to treat hypertriglyceridemia. The triglyceride (TG) lowering effect is likely due to an alteration in lipid metabolism in the liver, but details have not been fully elucidated. To assess the effects of EPA on hepatic TG metabolism, mice were fed a high-fat and high-sucrose diet (HFHSD) for 2 weeks and were given highly purified EPA ethyl ester (EPA-E) daily by gavage. The HFHSD diet increased the hepatic TG content and the composition of monounsaturated fatty acids (MUFAs). EPA significantly suppressed the hepatic TG content that was increased by the HFHSD diet. EPA also altered the composition of fatty acids by lowering the MUFAs C16:1 and C18:1 and increasing n-3 PUFAs, including EPA and docosahexaenoic acid (DHA). Linear regression analysis revealed that hepatic TG content was significantly correlated with the ratios of C16:1/C16:0, C18:1/C18:0, and MUFA/n-3 PUFA, but was not correlated with the n-6/n-3 PUFA ratio. EPA also decreased the hepatic mRNA expression and nuclear protein level of sterol regulatory element binding protein-1c (SREBP-1c). This was reflected in the levels of lipogenic genes, such as acetyl-CoA carboxylase α (ACCα), fatty acid synthase, stearoyl-CoA desaturase 1 (SCD1), and glycerol-3-phosphate acyltransferase (GPAT), which are regulated by SREBP-1c. In conclusion, oral administration of EPA-E ameliorates hepatic fat accumulation by suppressing TG synthesis enzymes regulated by SREBP-1 and decreases hepatic MUFAs accumulation by SCD1.  相似文献   

5.
Whole brain radiation therapy (WBRT) leads to cognitive impairment in 40-50% of brain tumor survivors following treatment. Although the etiology of cognitive deficits post-WBRT remains unclear, vascular rarefaction appears to be an important component of these impairments. In this study, we assessed the effects of WBRT on the cerebrovasculature and the effects of systemic hypoxia as a potential mechanism to reverse the microvascular rarefaction. Transgenic mice expressing green fluorescent protein driven by the Acta2 (smooth muscle actin) promoter for blood vessel visualization were randomly assigned to control or radiated groups. Animals received a clinical series of 4.5 Gy WBRT two times weekly for 4 wk followed by 1 mo of recovery. Subsequently, mice were subjected to 11% (hypoxia) or 21% (normoxia) oxygen for 1 mo. Capillary density in subregions of the hippocampus revealed profound vascular rarefaction that persisted despite local tissue hypoxia. Nevertheless, systemic hypoxia was capable of completely restoring cerebrovascular density. Thus hippocampal microvascular rarefaction post-WBRT is not capable of stimulating angiogenesis and can be reversed by chronic systemic hypoxia. Our results indicate a potential shift in sensitivity to angiogenic stimuli and/or the existence of an independent pathway of regulating cerebral microvasculature.  相似文献   

6.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.  相似文献   

7.
The effect of dietary docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on host resistance to Paracoccidioides brasiliensis infection was investigated. Mice fed palm oil supplemented with DHA showed reduced antifungal activity in the spleen and liver, as compared with mice fed palm oil or soybean oil without supplementation with DHA. Mice fed DHA-supplemented soybean oil also showed reduced antifungal activity in the liver, but the extent of reduction was less profound. This reduction in antifungal activity was not observed with EPA-supplemented palm or EPA-supplemented soybean oil. These results suggest that two factors, DHA and palm oil in combination, are involved in reducing the host resistance. DHA-enriched palm oil was also responsible for an increase in DHA concentration and a marked decrease in arachidonic acid content in the spleen and liver. However, this group did not show elevated spleen and liver phospholipid hydroperoxide levels compared with the other groups, excluding the possibility that the reduction in antifungal activity observed with DHA-enriched palm oil is due to acceleration of in vivo lipid peroxidation. Greater infection-induced increases in spleen and serum interferon-gamma concentrations were observed in mice fed DHA-enriched palm oil compared with the other groups.  相似文献   

8.
The beneficial role of dietary restriction (DR) was studied in streptozotocin (STZ)-induced diabetes in mice. The DR mice exhibited the lower blood glucose (mg/dl) level as compared to ad libitum (AL) fed ones. After 3 months' DR, STZ treatment to both AL and DR mice showed significant (p < 0.001) elevation of the blood glucose level in AL-fed mice, while a lower level of glucose was maintained in DR-fed mice. The ability of maintaining a low blood glucose level in STZ-treated DR mice indicated that STZ might have been ineffective from its action on beta cells of pancreas by long-term DR. Thus, these findings suggested that DR may be an important tool for preventing the diabetic conditions. However, further studies are required to know the mechanism(s) of DR protection against diabetogenic action of STZ in experimental animals.  相似文献   

9.
The inflammatory response is designed to help fight and clear infection, remove harmful chemicals, and repair damaged tissue and organ systems. Although this process, in general, is protective, the failure to resolve the inflammation and return the target tissue to homeostasis can result in disease, including the promotion of cancer. A plethora of published literature supports the contention that dietary n-3 polyunsaturated fatty acids (PUFA), and eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in particular, are important modulators of a host's inflammatory/immune responses. The following review describes a mechanistic model that may explain, in part, the pleiotropic anti-inflammatory and immunosuppressive properties of EPA and DHA. In this review, we focus on salient studies that address three overarching mechanisms of n-3 PUFA action: (i) modulation of nuclear receptor activation, i.e., nuclear factor-κB (NF-κB) suppression; (ii) suppression of arachidonic acid–cyclooxygenase-derived eicosanoids, primarily prostaglandin E2-dependent signaling; and (iii) alteration of the plasma membrane micro-organization (lipid rafts), particularly as it relates to the function of Toll-like receptors (TLRs), and T-lymphocyte signaling molecule recruitment to the immunological synapse (IS). We propose that lipid rafts may be targets for the development of n-3 PUFA-containing dietary bioactive agents to down-modulate inflammatory and immune responses and for the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

10.
B J Holub 《CMAJ》1988,139(5):377-381
Recent epidemiologic studies have shown that rates of cardiovascular disease are lower in populations such as the Greenland Eskimos than in those that do not eat seafood, even though the levels of dietary fat intake are often similar. Dietary fish oils are rich in eicosapentaenoic acid (EPA), a polyunsaturated fatty acid of the omega-3 series. EPA has been shown to prolong bleeding time and to decrease platelet aggregation and blood viscosity. EPA inhibits the production of prostaglandins from endogenous arachidonic acid, which is associated with the formation of thromboxane A2 and may also dampen cyclo-oxygenase and lipoxygenase metabolites involved in mediating endothelial cell proliferation. Dietary fish oils are now available in the form of EPA-enriched capsules. Short-term trials in humans have shown that EPA significantly reduces the levels of plasma triglycerides and may increase the levels of high-density lipoproteins; however, no consistent effect on serum cholesterol levels has been shown. The results of evaluations of EPA''s use in patients with renal disorders, mild hypertension, inflammatory disorders or hyperlipidemia have been promising. On the basis of the epidemiologic and biologic evidence dietary fish oils warrant further study in extensive clinical trials.  相似文献   

11.

Background

Resveratrol is a bioactive polyphenol enriched in red wine that exhibits many beneficial health effects via multiple mechanisms. However, it is unclear whether resveratrol is beneficial for the prevention of food allergy. This study investigated whether resveratrol inhibited the development of food allergy by using a mouse model of the disease.

Methodology/Principal Findings

Mice fed standard diet or standard diet plus resveratrol were sensitized by intragastric administration of ovalbumin (OVA) and mucosal adjuvant cholera toxin (CT). Several manifestations of food allergy were then compared between the mice. The effects of resveratrol on T cells or dendritic cells were also examined by using splenocytes from OVA-specific T cell-receptor (TCR) transgenic DO11.10 mice or mouse bone marrow-derived dendritic cells (BMDCs) in vitro. We found that mice fed resveratrol showed reduced OVA-specific serum IgE production, anaphylactic reaction, and OVA-induced IL-13 and IFN-ã production from the mesenteric lymph nodes (MLNs) and spleens in comparison to the control mice, following oral sensitization with OVA plus CT. In addition, resveratrol inhibited OVA plus CT-induced IL-4, IL-13, and IFN-ã production in splenocytes from DO11.10 mice associated with inhibition of GATA-3 and T-bet expression. Furthermore, resveratrol suppressed the OVA plus CT-induced CD25 expression and IL-2 production in DO11.10 mice-splenocytes in association with decreases in CD80 and CD86 expression levels. Finally, resveratrol suppressed CT-induced cAMP elevation in association with decreases in CD80 and CD86 expression levels in BMDCs.

Conclusions/Significance

Ingestion of resveratrol prevented the development of a food allergy model in mice. Given the in vitro findings, resveratrol might do so by inhibiting DC maturation and subsequent early T cell activation and differentiation via downregulation of CT-induced cAMP activation in mice. These results suggest that resveratrol may have potential for prophylaxis against food allergy.  相似文献   

12.
Irradiation with UVB (290–320 nm) initiates a systemic immunosuppression detectable as suppression of contact hypersensitivity (CHS). We investigated susceptibility to UV suppression in reciprocal F1-hybrid and backcross mice derived from BALB/c (low susceptibility) and C57BL/6 (high susceptibility) inbred strains. CB6F1 male mice exhibited high susceptibility and B6CF1 male mice exhibited low susceptibility, indicating a major X-linked effect in the genetic control of UV immune suppression. Females of either F1 hybrid showed intermediate suppression, consistent with random X-inactivation. A model of monogenic X-linked control was not sufficient, and evidence for the action of two genetically unlinked autosomal genes was found in parental backcross animals. Both sexes of (BALB/c × CB6F1) mice showed a 1 high: 1 low ratio of phenotypes, indicating control by a major autosomal locus, Uvs1, confirmed by propagation of the high phenotype through selective backcrossing for nine generations to BALB/c. Uvs1 was not genetically linked to 12 chromosomal markers including the pigment genes b (brown) and c (albino). Backcross animals (C57BL/6 × CB6F1) showed a significant sex difference, male mice giving a 3 high: 1 low ratio of phenotypes, compatible with the action of a second autosomal locus, Uvs2, in this hybrid. The findings are compatible with a model in which high phenotype (Uvs1 b/Uvs1 b) is dominant when subjected to recessive epistatis by the X-chromosome locus Uvs3, or by the autosomal locus Uvs2. The finding of genetic control by interacting autosomal and X-linked genes is unique. Genetically determined high susceptibility to UV immunosuppression may be an important risk factor for UV-related human diseases.  相似文献   

13.
We have demonstrated that downregulation of proliferation by CD4(+) T-cells in mice fed n-3 PUFA diets is dependent on the involvement of CD28. Therefore, we hypothesized that the balance of co-stimulatory and downregulatory properties of CD28 and CTLA-4, respectively, would be altered by diet. Mice were fed a control corn oil (CO)-enriched diet devoid of n-3 PUFA, or diets enriched with either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 14d. The proliferation of splenic CD4(+) T-cells was suppressed by DHA and EPA following stimulation with anti-CD3 and anti-CD28. Surprisingly, the number of surface CD28 molecules was not reduced in activated CD4(+) T-cells from either group of n-3 PUFA-fed mice. However, in mice fed EPA, CTLA-4 protein levels were enhanced significantly 72 h post-activation (P<0.01). Therefore, we conclude that dietary EPA may suppress CD4(+) T-cell activation by enhancing the downregulatory co-receptor CTLA-4, while not altering the levels of CD28.  相似文献   

14.
Exposure of mice to UVB radiation produces a highly selective, systemic immunosuppression associated with the appearance of suppressor T lymphocytes. Suppression of delayed hypersensitivity to hapten-coupled syngeneic cells has been shown to result from an altered distribution of antigen-presenting cells. The purpose of this study was to determine whether an alteration in the activity of antigen-presenting cells could account for the systemic suppression of contact hypersensitivity (CHS) by UVB radiation. Fluorescein isothiocyanate (FITC) was used for contact sensitization because it uses different antigen-presenting cells than does oxazolone to induce CHS. Our previous studies demonstrated that CHS to oxazolone was suppressed by UVB irradiation. In these studies, we show that exposure of mice to UVB radiation before epicutaneous application of FITC onto unirradiated skin markedly decreased the CHS response to FITC painted on unexposed ears. Cyclophosphamide-sensitive suppressor T cells were detectable in the spleens of mice exhibiting decreased CHS. The antigen-presenting activity of cells in lymph nodes draining the site of epicutaneous sensitization (DLN cells) was assessed by injecting them into the hind footpads of syngeneic recipients and measuring the CHS response to FITC 6 days later. Viable DLN cells from UVB-irradiated, FITC-sensitized mice were equal to those from unirradiated, FITC-sensitized mice in their ability to induce CHS in normal recipients. No sensitization resulted when killed DLN cells were used for immunization, indicating that sensitization was not caused by reprocessing of antigen by host cells. We conclude that impairment of the CHS reaction in UVB-irradiated mice does not appear to be blocked at an initial step of antigen uptake, processing, or presentation, but must be impaired at some other step in the immunologic pathway.  相似文献   

15.
A number of acute wasting conditions are associated with an upregulation of the ubiquitin-proteasome system in skeletal muscle. Eicosapentaenoic acid (EPA) is effective in attenuating the increased protein catabolism in muscle in cancer cachexia, possibly due to inhibition of 15-hydroxyeicosatetraenoic acid (15-HETE) formation. To determine if a similar pathway is involved in other catabolic conditions, the effect of EPA on muscle protein degradation and activation of the ubiquitin-proteasome pathway has been determined during acute fasting in mice. When compared with a vehicle control group (olive oil) there was a significant decrease in proteolysis of the soleus muscles of mice treated with EPA after starvation for 24 h, together with an attenuation of the proteasome "chymotryptic-like" enzyme activity and the induction of the expression of the 20S proteasome alpha-subunits, the 19S regulator and p42, an ATPase subunit of the 19S regulator in gastrocnemius muscle, and the ubiquitin-conjugating enzyme E2(14k). The effect was not shown with the related (n-3) fatty acid docosahexaenoic acid (DHA) or with linoleic acid. However, 2,3,5-trimethyl-6-(3-pyridylmethyl)1,4-benzoquinone (CV-6504), an inhibitor of 5-, 12- and 15-lipoxygenases also attenuated muscle protein catabolism, proteasome "chymotryptic-like" enzyme activity and expression of proteasome 20S alpha-subunits in soleus muscles from acute fasted mice. These results suggest that protein catabolism in starvation and cancer cachexia is mediated through a common pathway, which is inhibited by EPA and is likely to involve a lipoxygenase metabolite as a signal transducer.  相似文献   

16.
BACKGROUND: Abdominal sepsis induces a local production of proinflammatory mediators that may trigger both septic shock and organ-system dysfunction. AIMS: The present study analyzed exudation, cell migration, and CD11a and CD18 subset cells of both local and systemic responses induced by fecal peritonitis in mice. METHODS: Animals were anesthetized and, after performing a midline incision in the abdomen, the cecum was ligated and punctured twice with a needle. Sham-operated animals were included. Some groups were previously treated with Evans blue dye (intravenously) to further evaluate the amount of tissue and abdominal cavity leakages. RESULTS: Fecal peritonitis triggered a local inflammatory reaction with an increased number of leukocytes and exudation between 6 and 48 h (p < 0.01). Although CD11a/CD18-positive cells in the abdomen peaked after 24h, a significant decrease of them was detected after 48 h (p < 0.05). At the studied period of time (6-48 h), different degrees of exudation in several organs occurred, whereas a significant late recruitment (24 h) of CD11a/CD18 cells into the lungs was observed. CONCLUSIONS: In this model, cell migration and exudation at the site of injury occurred in parallel. However, in the lungs, the recruitment of leukocytes that express CD11a/CD18 adhesion molecules constitutes a non-dependent event in relation to fluid leakage accumulation at this site.  相似文献   

17.
Ozone depletion results in an increased flux of biologically damaging radiations reaching the earth. Although ultraviolet (UV) penetration is attenuated by the seawater, harmful effects can be still observed at low depths where sea urchin embryos are living. We have used Paracentrotus lividus embryos to study the impacts of UV radiation on their development. Blastula cultures were exposed to different doses of UVB (312 nm) radiations and the resulting endpoint effects were evaluated in terms of embryonic morphological abnormalities, variations in specific gene expression, and changes in the levels of stress proteins. We found that embryos were moderately sensitive to 50 J/m2 UVB radiation; an increase in the number of developmentally delayed and malformed embryos was detected when increasing doses, up to 1000 J/m2, were used. Major developmental defects, observed 24 and 48 h after exposure, consisted in the failure of skeleton elongation and patterning. Accordingly, we found a reduction in the number of primary mesenchyme cells that expressed Pl-SM30, a gene coding for one of the specific matrix proteins of the skeleton. The morphological effects observed 1, 24, and 48 h after exposure were correlated with a dose-dependent increase in the level and in the activation of two recognized stress markers, namely hsp70 and p38 MAPk, respectively, consistent with their role in mediating cellular response to stress and suggesting a function in embryo survival.  相似文献   

18.
A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Abeta oligomers. DHA pre-treatment was observed to significantly increase neuronal survival upon Abeta treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal-related kinase (ERK)-related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Abeta oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.  相似文献   

19.
Mice were successfully contact photosensitized with 3,3',4',5-tetrachlorosalicylanilide (TCSA) plus black light irradiation. Pre-exposure of the photosensitizing site (ca 5 cm2) to UVB (280 to 320 nm; 400 mJ/cm2) rendered mice unresponsive to a challenge reaction. Cell transfer experiments demonstrated that the spleens from the nonreactive mice contained suppressor T cells (Ts) that were antigen-specific and that blocked the afferent limb of contact photosensitivity to TCSA. To exert suppressive functions, Ts required another population of cyclophosphamide-sensitive T cells that resided in the spleens of nonsensitized mice. The results provide evidence that UVB-induced aberrant homeostasis of the skin caused a marked suppression of immune system that is associated with the generation of Ts.  相似文献   

20.
Matrix metalloproteinases (MMPs) are key mediators in extra-cellular matrix remodelling and implicated primarily in bone growth, and particularly in osteoclastic bone resorption. We hypothesise that MMPs have a role in the increased bone remodelling resulting from oestrogen deficiency. Transgenic (TG) mice overexpressing TIMP-1 in their osteoblastic cells and their wild-type (WT) littermates were ovariectomised. One month after surgery, bone mineral density (BMD) and bone microarchitecture were assessed. Primary cells from WT and TG mice were used to determine how TIMP-1 affects osteoclast and osteoblastic cells. The reduction of BMD induced by ovariectomy in WT mice was not observed in the transgenic mice. The transgene overexpression also dampened the post-ovariectomy increase in bone resorption in contrast to the WT mice. In vivo, osteoclastic surfaces and D-pyridinoline were not increased in TG mice, and ex vivo, the differentiation of osteoclasts from TG bone marrow precursor cells were unaffected by in vivo oestrogen deficiency or treatment. We showed also that TIMP-1 overexpression reduces and delays the osteoblastic proliferation and differentiation respectively, and reduced the generation of the active form of TGFbeta1 in the supernatant of TG osteoblasts. Our findings support the hypothesis that in vivo inhibition of osteoblastic MMPs prevented the bone loss induced by oestrogen deficiency, with a significant decrease in bone resorption. This effect was presumably resulting from (1) a direct inhibition of osteoclastic resorption activity by the TIMP-1 and (2) the modification in the local activation of extra-cellular signalling factors such as TGFbeta1 and the OPG/RANKL ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号