首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

2.
The salt tolerance was studied according to both fresh and dry matter increases of callus cultivated on the media supplemented with various sodium chloride concentrations as well as a high amount of K+, Na+, Ca2+, and Mg2+ ions as found in the East Slovakia salt soil lowland. The cells tolerate salinity at least up to 85 mM. According to statistical evaluation the salt concentrations used did not inhibit growth rate and development of tissue cultures.  相似文献   

3.
Lupinus albus L. seeds were treated with different concentrations (from 10 μM to 50 mM) of H2O2, m-chloroperoxybenzoic acid (mCPBA), ascorbate (ASC) and glutathione (GSH). The efficiency as inhibitors on germination and on the subsequent growth of the hypocotyl was mCPBA > GSH > ASC = H2O2, which suggest that inhibitory efficiency was dependent on the compound per se rather than on its redox nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

5.
Glutathione reductase from the liver of DBA/2J mice was purified to homogeneity by means of ammonium sulfate fractionation and two subsequent affinity chromatography steps using 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose and N6-(6-aminohexyl)-adenosine 2',5'-biphosphate-Sephadex columns. A facile procedure for the synthesis of 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose is also presented. The purified enzyme exhibits a specific activity of 158 U/mg and an A280/A460 of 6.8. It was shown to be a dimer of Mr 105000 with a Stokes radius of 4.18 nm and an isoelectric point of 6.46. Amino acid composition revealed some similarity between the mouse and the human enzyme. Antibodies against mouse glutathione reductase were raised in rabbits and exhibited high specificity. The catalytic properties of mouse liver glutathione reductase have been studied under a variety of experimental conditions. As with the same enzyme from other sources, the kinetic data are consistent with a 'branched' mechanism. The enzyme was stabilized against thermal inactivation at 80 degrees C by GSSG and less markedly by NADP+ and GSH, but not by NADPH or FAD. Incubation of mouse glutathione reductase in the presence of NADPH or NADH, but not NADP+ or NAD+, produced an almost complete inactivation. The inactivation by NADPH was time, pH and concentration dependent. Oxidized glutathione protected the enzyme against inactivation, which could also be reversed by GSSG or other electron acceptors. The enzyme remained in the inactive state even after eliminating the excess NADPH. The inactive enzyme showed the same molecular weight as the active glutathione reductase. The spectral properties of the inactive enzyme have also been studied. It is proposed that auto-inactivation of glutathione reductase by NADPH and the protection as well as reactivation by GSSG play in vivo an important regulatory role.  相似文献   

6.
In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050).  相似文献   

7.
A scheme is described for the large scale purification of thioredoxin, thioredoxin reductase, and glutathione reductase. The scheme is based on an initial separation of thioredoxin from the two reductases by affinity chromatography on agarose-bound N6-(6-aminohexyl)-adenosine 2',5'-bisphosphate (agarose-2',5'-ADP). The two reductases were then separated by hydrophobic chromatography and purified separately to homogeneity. Thioredoxin was purified to homogeneity by immunoadsorption to agarose containing immobilized goat anti-thioredoxin. Overall yields for thioredoxin, thioredoxin reductase, and glutathione reductase exceeded 80% in each case. Both reductases exhibit an absorption band at approximately 320 nm which appears due to a residual amount of tightly bound NADP. Presence of this absorption band has no apparent effect on the specific activity of either enzyme.  相似文献   

8.
Summary Frieble calli, obtained from petioles ofGeranium roberlianum were used for the production of cell suspension cultures in liquid MS modified medium supplemented with BAP and NAA. Casamino acids were shown to be necessary for suspension cultures establishment With a 15.9×104 cell. ml–1 concentration a td=38.2h was achieved.  相似文献   

9.
10.
11.
The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.  相似文献   

12.
13.
The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H2O2 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H2O2 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O2.− and H2O2 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O2.− and H2O2 scavenging enzymes in chloroplasts.  相似文献   

14.
In different parts of both micropropagated and intact(ordinary, soil-grown) chamomile plants and in hairyroot cultures of this species, formaldehyde (HCHO) indimedone adduct form was identified and quantified byan automatic OPLC instrument using authenticformaldemethone as a standard. The amount of HCHObound by the dimedone reagent increases as theconcentration of dimedone is increased, until amaximum is reached. The HCHO detected is thought to bederived from metabolically-labile hydroxymethylgroups, and suggests that some as yet unidentifiedhydroxymethyl-containing molecule in chamomile mayplay an important role in the metabolism of this commonmedicinal plant.  相似文献   

15.
A reversed-phase ion-exchange high-performance liquid chroamtographic technique, suitable for the separate measurement of reduced (GSH) and oxidized (GSSG) glutathione in cultures of adult rat hepatocytes, is described. A commercially available Nucleosil 120-7NH2 column was used. A complete run took ca. 22 min. The retention times for GSH and GSSG were 10.6 and 12.7 min, respectively, providing a resolution coefficient of 1.4. The coefficients of variation for GSH and GSSG were ca. 5 and 25%, respectively, for freshly isolated hepatocytes, and 16 and 15%, respectively, for 24-h cultured hepatocytes. The detector response was linear as a function of GSH and GSSG concentration and the hepatocytes concentration studied. Addition of up to 1.5 mg/ml bovine serum albumin to the culture medium had no effect on the linearity. The recovery for standards, ranging from 0 to 150 nmol of GSH or GSSG per millilitre in the presence of hepatocytes, was 98% for GSH and 80% for GSSG. The detection limit of the method was between 0.5 and 1.0 nmol of GSH and GSSG per millilitre. In cultured rat hepatocytes, the GSH content increased during the first 24 h of culture, followed by a slow decrease. After six days of culture, the GSH content was less than 50% of the value found for freshly isolated hepatocytes. GSSG was present in cultured rat hepatocytes in only small amounts and becomes unmeasurable after four days of culture.  相似文献   

16.
17.
18.
19.
The enzyme activities of the superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione reductase (GR) and thiobarbituric acid reactive substances (TBARS) content were measured in tissue extracts of the liver, kidney and lung of sheep in a nonpolluted control area (C), a polluted area pasture (PP) and those from polluted areas but fed in the laboratory with an experimental emission supplement diet (EEF). Compared with the control SOD, activity was significantly increased (1.75 times) only in the liver of the PP group. In the EEF group there was a tendency toward lower activities in all organs. The Cu,Zn-SOD isoenzymes pattern analyzed by isoelectrofocusing was different in the organs of the animals exposed to pollutants when compared with those of the controls. In the liver, two new isoenzymes with pI 5.30 and 5.70 were found in the PP group and an additional isoenzyme with pI 5.10 in the EEF group. The kidney isoenzymes with pl 5.30 and 5.40 were inhibited in the EEF group. In the lung, two new isoenzymes appeared with pl 5.30 and 5.40 in the PP group and two new isoenzymes with pI 6.10 and 6.50 in the EEF group. GSHPx activity was inhibited in the liver and kidney of the sheep exposed to pollutants. GR activity was significantly changed only in the liver. The activity in the PP group was 2.30 and 2.10 times higher than in the C and EEF groups, respectively. TBARS content was increased in the liver and kidney of the EEF group compared with the control.  相似文献   

20.
Pure glutathione reductase from Saccharomyces cerevisiae catalyzed under anaerobic conditions the enzymatic reduction of GSSG using electrochemically reduced methyl viologen as electron donor. The new assay was completely dependent on the amount of active enzyme present, and involved the formation of 1 mol GSH per mole of reduced methyl viologen consumed. The enzyme followed a standard Michaelis-Menten kinetics; a Km = 230 microM for reduced methyl viologen and a turnover number of 969 mumol GSSG reduced per minute per micromole enzyme were determined. The enzymatic activity seemed to depend on the redox potential, showing half-maximal activity at -0.407 V. The enzyme was quite specific: the activity using reduced benzyl viologen as electron donor was just 1.5% of that obtained with reduced methyl viologen at the same concentration and potential. Glutathione reductase was totally inactivated after a brief anaerobic exposure with reduced methyl viologen in the absence of GSSG; a partial reactivation was observed following addition of glutathione disulfide. No inhibition of the methyl viologen-dependent activity was observed in the presence of 2',5'-ADP or 2'-P-5'-ADP-ribose, two NADP(H) analogs, at concentrations which drastically inhibited the NADPH-dependent activity, thus suggesting that the reduced viologen does not interact with the pyridine nucleotide-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号