首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here four nonparametric statistics for linkage analysis that test whether pairs of affected relatives share marker alleles more often than expected. These statistics are based on simulating the null distribution of a given statistic conditional on the unaffecteds' marker genotypes. Each statistic uses a different measure of marker sharing: the SimAPM statistic uses the simulation-based affected-pedigree-member measure based on identity-by-state (IBS) sharing. The SimKIN (kinship) measure is 1.0 for identity-by-descent (IBD) sharing, 0.0 for no IBD status sharing, and the kinship coefficient when the IBD status is ambiguous. The simulation-based IBD (SimIBD) statistic uses a recursive algorithm to determine the probability of two affecteds sharing a specific allele IBD. The SimISO statistic is identical to SimIBD, except that it also measures marker similarity between unaffected pairs. We evaluated our statistics on data simulated under different two-locus disease models, comparing our results to those obtained with several other nonparametric statistics. Use of IBD information produces dramatic increases in power over the SimAPM method, which uses only IBS information. The power of our best statistic in most cases meets or exceeds the power of the other nonparametric statistics. Furthermore, our statistics perform comparisons between all affected relative pairs within general pedigrees and are not restricted to sib pairs or nuclear families.  相似文献   

2.
Case-control studies compare marker-allele distributions in affected and unaffected individuals, and significant results suggest linkage but may simply reflect population structure. For markers with m alleles (m > or = 2), a McNemar-like statistic, I, estimates the level of population association between marker and disease loci. To test for linkage after significant case-control tests, within-family tests are performed. These operate on the contingency table, with i, jth element equal to the number of parents that transmit marker allele Mi and do not transmit marker allele Mi to an affected offspring. The dimension of the table is the number of alleles at the marker locus. Three test statistics have recently been proposed in the literature: Tc compares symmetric pairs of cells (i, j) and (j, i), Tm compares row and column totals for the same marker allele, and a likelihood ratio statistic Tl uses all the cells in the table. In addition, we consider a new statistic, Tmhet, that uses only the heterozygous parents and is approximately chi2 with (m - 1) df. We use a Monte Carlo test to guarantee valid tests and to demonstrate the inferiority of Tc and the equality of Tm and Tl in terms of power. The power of the Tmhet test is close but not always equal to the power of the Tm test. We also show that under the alternative hypothesis of linkage, Tm is approximately noncentral chi2 with (m - 1) df and noncentrality parameter 2NT(1 - 2theta)2I*, when data on single affecteds in NT families are used. If the disease has a low population frequency, then I* is estimated using the case-control statistic I. This offers a basis for choosing sample size, or choosing a marker system.  相似文献   

3.
The affected-pedigree-member method of linkage analysis.   总被引:67,自引:45,他引:22       下载免费PDF全文
This paper describes a generalization of the affected-sib-pair method of linkage analysis to pedigrees. By substituting identity-by-state relations for identity-by-descent relations, we develop a test statistic for detecting departures from independent segregation of disease and marker phenotypes. The statistic is based on the marker phenotypes of affected pedigree members only. Since it is more striking for distantly affected relatives to share a rare marker allele than a common marker allele, the statistic also includes a weighting factor based on allele frequency. The distributional properties of the statistic are investigated theoretically and by simulation. Part of the theoretical treatment entails generalizing Karigl's multiple-person kinship coefficients. When the test statistic is applied to pedigree data on Huntington disease, the null hypothesis of independent segregation between the marker locus and the disease locus is firmly rejected. In this case, as expected, there is a loss of power when compared with standard lod-score analysis. However, our statistic possesses the advantage of requiring no explicit assumptions about the mode of inheritance of the disease. This point is illustrated by application of the test statistic to data on rheumatoid arthritis.  相似文献   

4.
Linkage disequilibrium of a marker allele with disease may characterize a chromosomal region containing the disease gene. In several diseases, only a limited number of pedigrees are linked to a particular region, because of linkage heterogeneity. Disequilibrium in this situation is more easily detected when the association is positive (an infrequent marker allele associated with disease mutation), and sampling is conditional on presence or absence of illness in individuals or gametes. Defining H as the marker frequency in illness-transmitting gametes, and Q the marker frequency in normal chromosomes, we compute the power of a given sample (of ill persons/gametes) to detect association in a disease that is genetically heterogeneous, with a dominantly transmitted form linked to a marker. The estimation of Q and the effects of linkage heterogeneity (when unrelated individuals are examined) are also analyzed. Two linked pedigrees give acceptable power to detect association when the allele is frequent enough in illness gametes (H greater than or equal to .6) and infrequent enough in normals (Q less than or equal to .01). If H greater than or equal to .2, 14 pedigrees are needed to give the same power. From the analysis of different values of Q and H, it appears that even in the presence of considerable genetic heterogeneity and complex inheritance (where some normals carry the disease mutation), association may be detected with clinically feasible sample sizes.  相似文献   

5.
Ghosh S  Reich T 《Human heredity》2002,53(4):181-186
The traditional transmission disequilibrium test (TDT) (Spielman et al., 1993) is a powerful test for association only in the presence of linkage. Since allele transmissions from homozygous parents do not carry any information on linkage, the TDT statistic uses data only on heterozygous parents. However, homozygous parents carry information on association between alleles at a marker locus and a disease locus. In this article, we explore whether inclusion of homozygous parents increases the power to detect association. The resultant test statistic follows a chi(2) distribution with 2 degrees of freedom. Monte-Carlo simulations are included to compare the performance of this test with the traditional TDT under different disease models.  相似文献   

6.
Both theoretical calculations and simulation studies have been used to compare and contrast the statistical power of methods for mapping quantitative trait loci (QTLs) in simple and complex pedigrees. A widely used approach in such studies is to derive or simulate the expected mean test statistic under the alternative hypothesis of a segregating QTL and to equate a larger mean test statistic with larger power. In the present study, we show that, even when the test statistic under the null hypothesis of no linkage follows a known asymptotic distribution (the standard being chi(2)), it cannot be assumed that the distribution under the alternative hypothesis is noncentral chi(2). Hence, mean test statistics cannot be used to indicate power differences, and a comparison between methods that are based on simulated average test statistics may lead to the wrong conclusion. We illustrate this important finding, through simulations and analytical derivations, for a recently proposed new regression method for the analysis of general pedigrees to map quantitative trait loci. We show that this regression method is not necessarily more powerful nor computationally more efficient than a maximum-likelihood variance-component approach. We advocate the use of empirical power to compare trait-mapping methods.  相似文献   

7.
Nonparametric linkage analysis is widely used to map susceptibility genes for complex diseases. This paper introduces six nonparametric statistics for measuring marker allele sharing among the affected members of a pedigree. We compare the power of these new statistics and three previous statistics to detect linkage with Mendelian diseases having recessive, additive, and dominant modes of inheritance. The nine statistics represent all possible combinations of three different IBD scoring functions and three different schemes for sampling genes among affecteds. Our results strongly suggest that the statistic T(rec)(blocks) is best for recessive traits, while the two statistics T(kin)(pairs) and T(all)(kin) vie for best for an additive trait. The best statistic for a dominant trait is less clear. The statistics T(kin)(pairs) and T(all)(kin) are equally promising for small sibships, but in extended pedigrees the statistics T(dom)(blocks) and T(dom)(pairs) appear best. For a complex trait, we advocate computing several of these statistics.  相似文献   

8.
The transmission/disequilibrium test (TDT) and the affected sib pair test (ASP) both test for the association of a marker allele with some conditions. Here, we present methods for calculating the probability of detecting the association (power) for a study examining a fixed number of families for suitability for the study and for calculating the number of such families to be examined. Both calculations use a genetic model for the association. The model considered posits a bi-allelic marker locus that is linked to a bi-allelic disease locus with a possibly nonzero recombination fraction between the loci. The penetrance of the disease is an increasing function of the number of disease alleles. The TDT tests whether the transmission by a heterozygous parent of a particular allele at a marker locus to an affected offspring occurs with probability greater than 0.5. The ASP tests whether transmission of the same allele to two affected sibs occurs with probability greater than 0.5. In either case, evidence that the probability is greater than 0.5 is evidence for association between the marker and the disease. Study inclusion criteria (IC) can greatly affect the necessary sample size of a TDT or ASP study. IC considered by us include a randomly selected parent at least one parent or both parents required to be heterozygous. It also allows a specified minimum number of affected offspring to be required (TDT only). We use elementary probability calculations rather than complex mathematical manipulations or asymptotic methods (large sample size approximations) to compute power and requisite sample size for a proposed study. The advantages of these methods are simplicity and generality.  相似文献   

9.
A general approach to family-based examinations of association between marker alleles and traits is proposed. The approach is based on computing p values by comparing test statistics for association to their conditional distributions given the minimal sufficient statistic under the null hypothesis for the genetic model, sampling plan and population admixture. The approach can be applied with any test statistic, so any kind of phenotype and multi-allelic markers may be examined, and covariates may be included in analyses. By virtue of the conditioning, the approach results in correct type I error probabilities regardless of population admixture, the true genetic model and the sampling strategy. An algorithm for computing the conditional distributions is described, and the results of the algorithm for configurations of nuclear families are presented. The algorithm is applicable with all pedigree structures and all patterns of missing marker allele information.  相似文献   

10.
QTL analysis in arbitrary pedigrees with incomplete marker information   总被引:3,自引:0,他引:3  
Vogl C  Xu S 《Heredity》2002,89(5):339-345
Mapping quantitative trait loci (QTL) in arbitrary outbred pedigrees is complicated by the combinatorial possibilities of allele flow relationships and of the founder allelic configurations. Exact methods are only available for rather short and simple pedigrees. Stochastic simulation using Markov chain Monte Carlo (MCMC) integration offers more flexibility. MCMC methods are less natural in a frequentist than in a Bayesian context, which we therefore adopt. Among the MCMC algorithms for updating marker locus genotypes, we implement the descent-graph algorithm. It can be used to update marker locus allele flow relationships and can handle arbitrarily complex pedigrees and missing marker information. Compared with updating marker genotypic information, updating QTL parameters, such as position, effects, and the allele flow relationships is relatively easy with MCMC. We treat the effect of each diploid combination of founder alleles as a random variable and only estimate the variance of these effects, ie, we model diploid genotypic effects instead of the usual partition in additive and dominance effects. This is a variant of the random model approach. The number of QTL alleles is generally unknown. In the Bayesian context, the number of QTL present on a linkage group can be treated as variable. Computer simulations suggest that the algorithm can indeed handle complex pedigrees and detect two QTL on a linkage group, but that the number of individuals in a single extended family is limited to about 50 to 100 individuals.  相似文献   

11.
An entropy-based statistic for genomewide association studies   总被引:8,自引:0,他引:8       下载免费PDF全文
Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.  相似文献   

12.
ABSTRACT: BACKGROUND: In the last years GWA studies have successfully identified common SNPs associated with complex diseases. However, most of the variants found this way account for only a small portion of the trait variance. This fact leads researchers to focus on rare-variant mapping with large scale sequencing, which can be facilitated by using linkage information. The question arises why linkage analysis often fails to identify genes when analyzing complex diseases. Using simulations we have investigated the power of parametric and nonparametric linkage statistics (KC-LOD, NPL, LOD and MOD scores), to detect the effect of genes responsible for complex diseases using different pedigree structures. RESULTS: As expected, a small number of pedigrees with less than three affected individuals has low power to map disease genes with modest effect. Interestingly, the power decreases when unaffected individuals are included in the analysis, irrespective of the true mode of inheritance. Furthermore, we found that the best performing statistic depends not only on the type of pedigrees but also on the true mode of inheritance. CONCLUSIONS: When applied in a sensible way linkage is an appropriate and robust technique to map genes for complex disease. Unlike association analysis, linkage analysis is not hampered by allelic heterogeneity. So, why does linkage analysis often fail with complex diseases? Evidently, when using an insufficient number of small pedigrees, one might miss a true genetic linkage when actually a real effect exists. Furthermore, we show that the test statistic has an important effect on the power to detect linkage as well. Therefore, a linkage analysis might fail if an inadequate test statistic is employed. We provide recommendations regarding the most favorable test statistics, in terms of power, for a given mode of inheritance and type of pedigrees under study, in order to reduce the probability to miss a true linkage.  相似文献   

13.
Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants.  相似文献   

14.
We have compared the power of several allele-sharing statistics for "nonparametric" linkage analysis of X-linked traits in nuclear families and extended pedigrees. Our rationale was that, although several of these statistics have been implemented in popular software packages, there has been no formal evaluation of their relative power. Here, we evaluate the relative performance of five test statistics, including two new test statistics. We considered sibships of sizes two through four, four different extended pedigrees, 15 different genetic models (12 single-locus models and 3 two-locus models), and varying recombination fractions between the marker and the trait locus. We analytically estimated the sample sizes required for 80% power at a significance level of.001 and also used simulation methods to estimate power for a sample size of 10 families. We tried to identify statistics whose power was robust over a wide variety of models, with the idea that such statistics would be particularly useful for detection of X-linked loci associated with complex traits. We found that a commonly used statistic, S(all), generally performed well under various conditions and had close to the optimal sample sizes in most cases but that there were certain cases in which it performed quite poorly. Our two new statistics did not perform any better than those already in the literature. We also note that, under dominant and additive models, regardless of the statistic used, pedigrees with all-female siblings have very little power to detect X-linked loci.  相似文献   

15.
Recent admixture between genetically differentiated populations can result in high levels of association between alleles at loci that are <=10 cM apart. The transmission/disequilibrium test (TDT) proposed by Spielman et al. (1993) can be a powerful test of linkage between disease and marker loci in the presence of association and therefore could be a useful test of linkage in admixed populations. The degree of association between alleles at two loci depends on the differences in allele frequencies, at the two loci, in the founding populations; therefore, the choice of marker is important. For a multiallelic marker, one strategy that may improve the power of the TDT is to group marker alleles within a locus, on the basis of information about the founding populations and the admixed population, thereby collapsing the marker into one with fewer alleles. We have examined the consequences of collapsing a microsatellite into a two-allele marker, when two founding populations are assumed for the admixed population, and have found that if there is random mating in the admixed population, then typically there is a collapsing for which the power of the TDT is greater than that for the original microsatellite marker. A method is presented for finding the optimal collapsing that has minimal dependence on the disease and that uses estimates either of marker allele frequencies in the two founding populations or of marker allele frequencies in the current, admixed population and in one of the founding populations. Furthermore, this optimal collapsing is not always the collapsing with the largest difference in allele frequencies in the founding populations. To demonstrate this strategy, we considered a recent data set, published previously, that provides frequency estimates for 30 microsatellites in 13 populations.  相似文献   

16.
The potential of association studies for fine-mapping loci with common disease susceptibility alleles for complex genetic diseases in outbred populations is unclear. For a battery of tightly linked anonymous genetic markers spanning a candidate region centered around a disease locus, simulation methods based on a coalescent process with mutation, recombination, and genetic drift were used to study the spatial distribution of markers with large noncentrality parameters in a case-control study design. Simulations with a disease allele at intermediate frequency, presumably representing an old mutation, tend to exhibit the largest noncentrality parameter values at markers near the disease locus. In contrast, simulations with a disease allele at low frequency, presumably representing a young mutation, often exhibit the largest noncentrality parameter values at markers scattered over the candidate region. In the former case, sample sizes or marker densities sufficient to detect association are likely to lead to useful localization, whereas, in the latter case, localization of the disease locus within the candidate region is much less likely, regardless of the sample size or density of the map. The simulations suggest that for a single marker analysis, the simple strategy of choosing the marker with smallest associated P value to begin a laboratory search for the disease locus performs adequately for a common disease allele.  相似文献   

17.
Zhao J  Boerwinkle E  Xiong M 《Human genetics》2007,121(3-4):357-367
Availability of a large collection of single nucleotide polymorphisms (SNPs) and efficient genotyping methods enable the extension of linkage and association studies for complex diseases from small genomic regions to the whole genome. Establishing global significance for linkage or association requires small P-values of the test. The original TDT statistic compares the difference in linear functions of the number of transmitted and nontransmitted alleles or haplotypes. In this report, we introduce a novel TDT statistic, which uses Shannon entropy as a nonlinear transformation of the frequencies of the transmitted or nontransmitted alleles (or haplotypes), to amplify the difference in the number of transmitted and nontransmitted alleles or haplotypes in order to increase statistical power with large number of marker loci. The null distribution of the entropy-based TDT statistic and the type I error rates in both homogeneous and admixture populations are validated using a series of simulation studies. By analytical methods, we show that the power of the entropy-based TDT statistic is higher than the original TDT, and this difference increases with the number of marker loci. Finally, the new entropy-based TDT statistic is applied to two real data sets to test the association of the RET gene with Hirschsprung disease and the Fcγ receptor genes with systemic lupus erythematosus. Results show that the entropy-based TDT statistic can reach p-values that are small enough to establish genome-wide linkage or association analyses.  相似文献   

18.
Thomas A 《Human heredity》2007,64(1):16-26
We review recent developments of MCMC integration methods for computations on graphical models for two applications in statistical genetics: modelling allelic association and pedigree based linkage analysis. We discuss and illustrate estimation of graphical models from haploid and diploid genotypes, and the importance of MCMC updating schemes beyond what is strictly necessary for irreducibility. We then outline an approach combining these methods to compute linkage statistics when alleles at the marker loci are in linkage disequilibrium. Other extensions suitable for analysis of SNP genotype data in pedigrees are also discussed and programs that implement these methods, and which are available from the author's web site, are described. We conclude with a discussion of how this still experimental approach might be further developed.  相似文献   

19.
A test statistic to detect errors in sib-pair relationships.   总被引:4,自引:2,他引:2  
Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.  相似文献   

20.
Fan R  Floros J  Xiong M 《Human heredity》2002,53(3):130-145
In this paper, we explore models and tests for association and linkage studies of a quantitative trait locus (QTL) linked to a multi-allele marker locus. Based on the difference between an offspring's conditional trait means of receiving and not receiving an allele from a parent at marker locus, we propose three statistics T(m), T(m,row) and T(m,col) to test association or linkage disequilibrium between the marker locus and the QTL. These tests are composite tests, and use the offspring marginal sample means including offspring data of both homozygous and heterozygous parents. For the linkage study, we calculate the offspring's conditional trait mean given the allele transmission status of a heterozygous parent at the marker locus. Based on the difference between the conditional means of a transmitted and a nontransmitted allele from a heterozygous parent, we propose statistics T(parsi), T(satur), T(gen) and T(m,het) to perform composite tests of linkage between the marker locus and the quantitative trait locus in the presence of association. These tests only use the offspring data that are related to the heterozygous parents at the marker locus. T(parsi) is a parsimonious or allele-wise statistic, T(satur) and T(gen )are satured or genotype-wise statistics, and T(m,het) compares the row and column sample means for offspring data of heterozygous parents. After comparing the powers and the sample sizes, we conclude that T(parsi) has higher power than those of the bi-allele tests, T(satur), T(gen), and T(m,het). If there is tight linkage between the marker and the trait locus, T(parsi) is powerful in detecting linkage between the marker and the trait locus in the presence of association. By investigating the goodness-of-fit of T(parsi), we find that T(satur) does not gain much power compared to that of T(parsi). Moreover, T(parsi) takes into account the pattern of the data that is consistent with linkage and linkage disequilibrium. As the number of alleles at the marker locus increases, T(parsi) is very conservative, and can be useful even for sparse data. To illustrate the usefulness and the power of the methods proposed in this paper, we analyze the chromosome 6 data of the Oxford asthma data, Genetic Analysis Workshop 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号