首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Malaria, caused by Plasmodia parasites, affects hundreds of millions of people. As purine auxotrophs, Plasmodia use transporters to import host purines for subsequent metabolism by the purine salvage pathway. Thus purine transporters are attractive drug targets. All sequenced Plasmodia genomes encode four ENTs (equilibrative nucleoside transporters). During the pathogenic intraerythrocytic stages, ENT1 is a major route of purine nucleoside/nucleobase transport. Another plasma membrane purine transporter exists because Plasmodium falciparum ENT1-knockout parasites survive at supraphysiological purine concentrations. The other three ENTs have not been characterized functionally. Codon-optimized Pf- (P. falciparum) and Pv- (Plasmodium vivax) ENT4 were expressed in Xenopus laevis oocytes and substrate transport was determined with radiolabelled substrates. ENT4 transported adenine and 2'-deoxyadenosine at the highest rate, with millimolar-range apparent affinity. ENT4-expressing oocytes did not accumulate hypoxanthine, a key purine salvage pathway substrate, or AMP. Micromolar concentrations of the plant hormone cytokinin compounds inhibited both PfENT4 and PvENT4. In contrast with PfENT1, ENT4 interacted with the immucillin compounds in the millimolar range and was inhibited by 10?μM dipyridamole. Thus ENT4 is a purine transporter with unique substrate and inhibitor specificity. Its role in parasite physiology remains uncertain, but is likely to be significant because of the strong conservation of ENT4 homologues in Plasmodia genomes.  相似文献   

3.
Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (i) a high-affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (ii) a separate high-affinity transporter for adenine, (iii) a low-affinity adenosine transporter, and (iv) a low-affinity/high-capacity adenine carrier. Hypoxanthine was taken up with 12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted PfNT1 (P. falciparum nucleoside transporter 1) gene we found that the high-affinity hypoxanthine/nucleoside transport activity was completely abolished, whereas the low-affinity adenosine transport activity was unchanged. Adenine transport was increased, presumably to partly compensate for the loss of the high-affinity hypoxanthine transporter. We thus propose a model for purine salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.  相似文献   

4.
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K(m) = 13.2 microM) and D-inosine (K(m) = 253 microM). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K(m) > 500 microM). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation.  相似文献   

5.
The recently identified human and rodent plasma membrane proteins CNT1, CNT2 and CNT3 belong to a gene family (CNT) that also includes the bacterial nucleoside transport protein NupC. Heterologous expression in Xenopus oocytes has established that CNT1-3 correspond functionally to the three major concentrative nucleoside transport processes found in human and other mammalian cells (systems cit, cif and cib, respectively) and mediate Na(+) - linked uptake of both physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs. Here, one describes a complementary Xenopus oocyte transport study of Escherichia coli NupC using the plasmid vector pGEM-HE in which the coding region of NupC was flanked by 5'- and 3'-untranslated sequences from a Xenopus beta-globin gene. Recombinant NupC resembled human (h) and rat (r) CNT1 in nucleoside selectivity, including an ability to transport adenosine and the chemotherapeutic drugs 3'-azido-3'-deoxythymidine (AZT), 2',3'- dideoxycytidine (ddC) and 2'-deoxy-2',2'-difluorocytidine (gemcitabine), but also interacted with inosine and 2',3'- dideoxyinosine (ddl). Apparent affinities were higher than for hCNT1, with apparent K(m) values of 1.5-6.3 microM for adenosine, uridine and gemcitabine, and 112 and 130 microM, respectively, for AZT and ddC. Unlike the relatively low translocation capacity of hCNT1 and rCNT1 for adenosine, NupC exhibited broadly similar apparent V(max) values for adenosine, uridine and nucleoside drugs. NupC did not require Na(+) for activity and was H(+) - dependent. The kinetics of uridine transport measured as a function of external pH were consistent with an ordered transport model in which H(+) binds to the transporter first followed by the nucleoside. These experiments establish the NupC-pGEM-HE/oocyte system as a useful tool for characterization of NupC-mediated transport of physiological nucleosides and clinically relevant nucleoside therapeutic drugs.  相似文献   

6.
The protozoan parasite Toxoplasma gondii depends upon salvaging the purines that it requires. We have re-analysed purine transport in T. gondii and identified novel nucleoside and nucleobase transporters. The latter transports hypoxanthine (TgNBT1; K(m)=0.91+/-0.19 microM) and is inhibited by guanine and xanthine: it is the first high affinity nucleobase transporter to be identified in an apicomplexan parasite. The previously reported nucleoside transporter, TgAT1, is low affinity with K(m) values of 105 and 134 microM for adenosine and inosine, respectively. We have now identified a second nucleoside transporter, TgAT2, which is high affinity and inhibited by adenosine, inosine, guanosine, uridine and thymidine (K(m) values 0.28-1.5 microM) as well as cytidine (K(i)=32 microM). TgAT2 also recognises several nucleoside analogues with therapeutic potential. We have investigated the basis for the broad specificity of TgAT2 and found that hydrogen bonds are formed with the 3' and 5' hydroxyl groups and that the base groups are bound through H-bonds with either N3 of the purine ring or N(3)H of the pyrimidine ring, and most probably pi-pi-stacking as well. The identification of these high affinity purine nucleobase and nucleoside transporters reconciles for the first time the low abundance of free nucleosides and nucleobases in the intracellular environment with the efficient purine salvage carried out by T. gondii.  相似文献   

7.
Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.  相似文献   

8.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

9.
The nucleoside transport characteristics of two strains of Leishmania donovani promastigotes were studied. Strain S1, growing in fully defined medium, and strain S2 (MHOM/ET/67/HA3) both transported adenosine and inosine, but only strain S1 transported uridine and thymidine. Competition studies in the presence of 100 microM of unlabeled adenosine, inosine, guanosine, 2'-deoxyadenosine, tubercidin, formycin B, 3'-deoxyinosine as well as uridine, thymidine and cytidine, with either 1 microM [3H]adenosine or [3H]inosine as permeant, were carried out. The inhibition profile with [3H]inosine as permeant was essentially identical in S1 and S2 promastigotes, indicating that the same inosine transporter was present in both strains. However, with [3H] adenosine as permeant, significant differences were noted between the two strains. Thus, only adenosine, 2'-deoxyadenosine, tubercidin, uridine, and thymidine were strongly inhibitory in S1 promastigotes, while essentially all nucleosides tested were effective in S2 promastigotes. This indicates that adenosine transport in S2 promastigotes seems to involve a transporter differing from that described for S1 promastigotes.  相似文献   

10.
Genetic analysis of nucleoside transport in Leishmania donovani.   总被引:4,自引:2,他引:2       下载免费PDF全文
Genetic dissection of nucleoside transport in Leishmania donovani indicates that the insect vector form of these parasites possesses two biochemically distinct nucleoside transport systems. The first transports inosine, guanosine, and formycin B, and the second transports pyrimidine nucleosides and the adenosine analogs, formycin A and tubercidin. Adenosine is transported by both systems. A mutant, FBD5, isolated by virtue of its resistance to growth inhibition by 5 microM formycin B, cannot efficiently transport inosine, guanosine, or formycin B. This cell line is also cross-resistant to growth inhibition by a spectrum of cytotoxic analogs of inosine and guanosine. A second parasite mutant, TUBA5, isolated for its resistance to 20 microM tubercidin, cannot take up from the culture medium radiolabeled tubercidin, formycin A, uridine, cytidine, or thymidine. Both the FBD5 and the TUBA5 cell lines have about a 50% reduced capacity to take up adenosine, indicating that adenosine is transported by both systems. A tubercidin-resistant clonal derivative of FBD5, FBD5-TUB, has acquired the combined biochemical phenotype of each single mutant. The wild-type and mutant cell lines transport purine bases and uracil with equal efficiency. Mutational analysis of the relative growth sensitivities to cytotoxic nucleoside analogs and the selective capacities to take up exogenous radiolabeled nucleosides from the culture medium have enabled us to define genetically the multiplicity and substrate specificities of the nucleoside transport systems in L. donovani promastigotes.  相似文献   

11.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

12.
Purine nucleobase transport in the intraerythrocytic malaria parasite   总被引:2,自引:0,他引:2  
Hypoxanthine, a nucleobase, serves as the major source of the essential purine group for the intraerythrocytic malaria parasite. In this study we have measured the uptake of hypoxanthine, and that of the related purine nucleobase adenine, by mature blood-stage Plasmodium falciparum parasites isolated from their host cells by saponin-permeabilisation of the erythrocyte and parasitophorous vacuole membranes. The uptake of both [3H]hypoxanthine and [3H]adenine was comprised of at least two components; in each case there was a rapid equilibration of the radiolabel between the intra- and extracellular solutions via a low-affinity transport mechanism, and an accumulation of radiolabel (such that the estimated intracellular concentration exceeded the extracellular concentration) via a higher-affinity process. The uptake of [3H]adenine was studied in more detail. The rapid, low-affinity equilibration of [3H]adenine between the intra-and extracellular solution was independent of the energy status of the parasite whereas the higher-affinity accumulation of the radiolabel was ATP-dependent. A kinetic analysis of adenine uptake revealed that the low-affinity (equilibrative) process had a Km of approximately 1.2mM, similar to the value of 0.82 mM estimated here (using the Xenopus laevis oocyte expression system) for the Km for the transport of adenine by PfENT1, a parasite-encoded member of the 'equilibrative nucleoside/nucleobase transporter' family. The results indicate that nucleobases enter the intraerythrocytic parasite via a rapid, equilibrative process that has kinetic characteristics similar to those of PfENT1.  相似文献   

13.
Purine transport into the protozoan parasite Toxoplasma gondii plays an indispensable nutritional function for this pathogen. To facilitate genetic and biochemical characterization of the adenosine transporter of the parasite, T. gondii tachyzoites were transfected with an insertional mutagenesis vector, and clonal mutants were selected for resistance to the cytotoxic adenosine analog adenine arabinoside (Ara-A). Whereas some Ara-A-resistant clones exhibited disruption of the adenosine kinase (AK) locus, others displayed normal AK activity, suggesting that a second locus had been tagged by the insertional mutagenesis plasmid. These Ara-A(r) AK+ mutants displayed reduced adenosine uptake capability, implying a defect in adenosine transport. Sequences flanking the transgene integration point in one mutant were rescued from a genomic library of Ara-A(r) AK+ DNA, and Southern blot analysis revealed that all Ara-A(r) AK+ mutants were disrupted at the same locus. Probes derived from this locus, designated TgAT, were employed to isolate genomic and cDNA clones from wild-type libraries. Conceptual translation of the TgAT cDNA open reading frame predicts a 462 amino acid protein containing 11 transmembrane domains, a primary structure and membrane topology similar to members of the mammalian equilibrative nucleoside transporter family. Expression of TgAT cRNA in Xenopus laevis oocytes increased adenosine uptake capacity in a saturable manner, with an apparent K(m) value of 114 microM. Uptake was inhibited by various nucleosides, nucleoside analogs, hypoxanthine, guanine, and dipyridamole. The combination of genetic and biochemical studies demonstrates that TgAT is the sole functional adenosine transporter in T. gondii and a rational target for therapeutic intervention.  相似文献   

14.
Plasma membrane vesicles were isolated from a subline of L929 mouse fibroblasts grown on defined medium in the absence of serum. These vesicles were not significantly contaminated by mitochondria or endoplasmic reticulum. The isolation procedure, a modification of that originally developed by McKeel and Jarett (McKeel, D.W., and Jarett, L. (1970) J. Cell Biol. 44, 417-432) employs mechanical homogenization in isotonic medium followed by differential centrifugation. The resultant plasma membrane vesicles take up radioactivity when exposed to uniformly labeled nucleosides. Two subfractions of the plasma membrane were isolated, distinguished by their differing activity of 5'-nucleotidase and (Na+,K+)-stimulated ATPase, two well known plasma membrane enzyme markers. Uptake of nucleoside radioactivity was extensively studied in one subfraction; it was linear with time and membrane concentration over ranges used for the studies. Apparent Km values for uptake of radioactivity from adenosine, inosine, and uridine were 7.1 +/- 26 muM, respectively. Uptake of radioactivity from all three nucleosides exhibits a broad pH optimum from pH 7 to pH 9, but falls off rapidly at lower pH. N-Ethylmaleimide was an effective inhibitor of uptake of radioactivity from all three nucleosides; uptake of radioactivity from uridine is more sensitive than uptake of radioactivity from the purine nucleosides. Adenosine inhibited uptake of radioactivity from inosine more than from uridine. Inosine inhibited the uptake of radioactivity from adenosine, but uridine did not. Caffeine and 6-methylaminopurine riboside (6-N-methyladenosine differentially inhibit uptake of radioactivity from adenosine and inosine, and thus the vesicles apparently possess seperate transport systems for uptake of radioactivity from purine nucleosides and from uridine.  相似文献   

15.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

16.
Lysosomes contain enzymatic activities capable of degrading nucleic acids to their constituent nucleosides, but the manner by which these degradation products are released from the lysosome is unknown. To investigate this process, human fibroblast lysosomes, purified on Percoll density gradients, were incubated with [3H]adenosine at pH 7.0, and the amount of adenosine taken up by the lysosomes was measured. Adenosine uptake by fibroblast lysosomes attained a steady state by 12 min at 37 degrees C and was unaffected by the presence of 2 mM MgATP or changes in pH from 5.0 to 8.0. An Arrhenius plot was linear with an activation energy of 12.9 kcal/mol and a Q10 of 2.0. Lysosomal adenosine uptake is saturable, displaying a Km of 9 mM at pH 7.0 and 37 degrees C. Various nucleosides and the nucleobase, 6-dimethylaminopurine, strongly inhibit lysosomal adenosine uptake, whereas neither D-ribose or nucleotide monophosphates have any significant effect upon lysosomal adenosine uptake. On a molar basis, purines are recognized more strongly than pyrimidines. Changing the nature of the nucleoside sugar from ribose to arabinose or deoxyribose has little effect on reactivity with this transport system. The known plasma membrane nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine, inhibit lysosomal nucleoside transport at relatively low concentrations (25 microM) relative to the Km of 9 mM for lysosomal adenosine uptake. The half-times of [3H]inosine and [3H]uridine efflux from fibroblast lysosomes ranged from 6 to 8 min at 37 degrees C. Trans effects were not observed to be associated with either inosine or uridine exodus. In contrast to adenosine uptake, adenine primarily enters fibroblast lysosomes by a route not saturable by high concentrations of various nucleosides. In conclusion, the saturability of lysosomal adenosine uptake and its specific, competitive inhibition by other nucleosides indicate the existence of a carrier-mediated transport system for nucleosides within fibroblast lysosomal membranes.  相似文献   

17.
Previous studies have shown that ATP is required for the growth of the intracellular parasite, Plasmodium, outside its host cell, the erythrocyte, and that bongkrekic acid, an inhibitor of mitochondrial ATP/ADP transporter, inhibits intraerythrocytic Plasmodium maturation. We have characterized ATP/ADP transport of Plasmodium falciparum, isolated by either immune lysis or N2-cavitation. [3H]ATP uptake was due to ATP/ADP exchange since ADP efflux was dependent on exogenous ATP in an approximate 1:1 stoichiometry and both ATP influx and ADP efflux were equally inhibited by atractyloside (Ki = 100 nM). ATP uptake was not inhibited by the nucleoside transport inhibitor, nitrobenzylthioinosine. Conversely, adenosine and hypoxanthine transport were insensitive to atractyloside. ATP influx was characterized by a Km = 0.14 mM and Vmax = 1.2 nmol ATP/min/10(6) cells. Substrate specificity studies for nucleotide-induced ADP efflux indicated a preference for an adenosine ring and triphosphate, but transport did not require a hydrolyzable phosphate bond. Protein synthesis was measured with free parasites starved of glucose. Addition of 1.0 mM ATP resulted in a 40% recovery of total protein synthetic capacity in a process inhibited by 500 nM atractyloside, suggesting that uptake of erythrocyte-derived ATP by P. falciparum may be essential for maintaining maximal rates of protein synthesis during specific stages of intra-erythrocytic parasite maturation.  相似文献   

18.
Nucleoside transport was examined in freshly isolated mouse intestinal epithelial cells. The uptake of formycin B, the C nucleoside analog of inosine, was concentrative and required extracellular sodium. The initial rate of sodium-dependent formycin B transport was saturable with a Km of 45 +/- 3 microM. The purine nucleosides adenosine, inosine, guanosine, and deoxyadenosine were all good inhibitors of sodium-dependent formycin B transport with 50% inhibition (IC50) observed at concentrations less than 30 microM. Of the pyrimidine nucleosides examined, only uridine (IC50, 41 +/- 9 microM) was a good inhibitor. Thymidine and cytidine were poor inhibitors with IC50 values greater than 300 microM. Direct measurements of [3H]thymidine transport revealed, however, that the uptake of this nucleoside was also mediated by a sodium-dependent mechanism. Thymidine transport was inhibited by low concentrations of cytidine, uridine, adenosine, and deoxyadenosine (IC50 values less than 25 microM), but not by formycin B, inosine, or guanosine (IC50 values greater than 600 microM). These data indicate that there are two sodium-dependent mechanisms for nucleoside transport in mouse intestinal epithelial cells, and that formycin B and thymidine may serve as model substrates to distinguish between these transporters. Neither of these sodium-dependent transport mechanisms was inhibited by nitrobenzylmercaptopurine riboside (10 microM), a potent inhibitor of one of the equilibrative (facilitated diffusion) nucleoside transporters found in many cells.  相似文献   

19.
Nucleoside transporters are likely to play a central role in the biochemistry of the parasite Trypanosoma brucei, since these protozoa are unable to synthesize purines de novo and must salvage them from their hosts. Furthermore, nucleoside transporters have been implicated in the uptake of antiparasitic and experimental drugs in these and other parasites. We have cloned the gene for a T. brucei nucleoside transporter, TbNT2, and shown that this permease is related in sequence to mammalian equilibrative nucleoside transporters. Expression of the TbNT2 gene in Xenopus oocytes reveals that the permease transports adenosine, inosine, and guanosine and hence has the substrate specificity of the P1 type nucleoside transporters that have been previously characterized by uptake assays in intact parasites. TbNT2 mRNA is expressed in bloodstream form (mammalian host stage) parasites but not in procyclic form (insect stage) parasites, indicating that the gene is developmentally regulated during the parasite life cycle. Genomic Southern blots suggest that there are multiple genes related in sequence to TbNT2, implying the existence of a family of nucleoside transporter genes in these parasites.  相似文献   

20.
The human concentrative (Na+-linked) plasma membrane transport proteins hCNT1, hCNT2, and hCNT3 are pyrimidine nucleoside-selective (system cit), purine nucleoside-selective (system cif), or broadly selective for both pyrimidine and purine nucleosides (system cib), respectively. All have orthologs in other mammalian species and belong to a gene family (CNT) that has members in insects, nematodes, pathogenic yeast, and bacteria. Here, we report the cDNA cloning and functional characterization of a CNT family member from an ancient marine prevertebrate, the Pacific hagfish (Eptatretus stouti). This Na+-nucleoside symporter, designated hfCNT, is the first transport protein to be characterized in detail in hagfish and is a 683-amino acid residue protein with 13 predicted transmembrane helical segments (TMs). hfCNT was 52, 50, and 57% identical in sequence to hCNT1, hCNT2, and hCNT3, respectively. Similarity to hCNT3 was particularly marked in the TM 4-13 region. When produced in Xenopus oocytes, hfCNT exhibited the transport properties of system cib, with uridine, thymidine, and inosine apparent K(m) values of 10-45 microM. The antiviral nucleoside drugs 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, and 2',3'-dideoxyinosine were also transported. Simultaneous measurement of uridine-evoked currents and radiolabeled uridine uptake under voltage-clamp conditions gave a Na+-to-uridine coupling ratio of 2:1 (cf. 2:1 for hCNT3 and 1:1 for hCNT1/2). The apparent K50 value for Na+ activation was >100 mM. A 50:50 chimera between hfCNT and hCNT1 (TMs 7-13 of hfCNT replaced by those of hCNT1) exhibited hCNT1-like cation interactions, establishing that the structural determinants of cation stoichiometry and binding affinity were located within the carboxy-terminal half of the protein. The high degree of sequence similarity between hfCNT and hCNT3 may indicate functional constraints on the primary structure of the transporter and suggests that cib-type CNTs fulfill important physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号