共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1 总被引:19,自引:0,他引:19
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases alpha and epsilon are stabilized for 40-60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM-related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single-stranded DNA that allows RP-A and Mec1 to promote DNA polymerase association. 相似文献
5.
RNA helicases mediate structural rearrangements of RNA or RNA-protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis-Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication. 相似文献
6.
The assembly of a protective cap onto the telomeres of eukaryotic chromosomes suppresses genomic instability through inhibition of DNA repair activities that normally process accidental DNA breaks. We show here that the essential Cdc13–Stn1–Ten1 complex is entirely dispensable for telomere protection in non‐dividing cells. However, Yku and Rap1 become crucially important for this function in these cells. After inactivation of Yku70 in G1‐arrested cells, moderate but significant telomere degradation occurs. As the activity of cyclin‐dependent kinases (CDK) promotes degradation, these results suggest that Yku stabilizes G1 telomeres by blocking the access of CDK1‐independent nucleases to telomeres. The results indeed show that both Exo1 and the Mre11/Rad50/Xrs2 complex are required for telomeric resection after Yku loss in non‐dividing cells. Unexpectedly, both asynchronously growing and quiescent G0 cells lacking Rap1 display readily detectable telomere degradation, suggesting an earlier unanticipated function for this protein in suppression of nuclease activities at telomeres. Together, our results show a high flexibility of the telomeric cap and suggest that distinct configurations may provide for efficient capping in dividing versus non‐dividing cells. 相似文献
7.
8.
Masai H 《Journal of biochemistry》2011,149(6):629-631
RecQ family helicases are conserved from bacteria to human. Across the species, they are known to be required for protecting genome from various genotoxic stresses. In human, five RecQ-related helicases have been identified and three of them, BLM, WRN and RecQL4, have been shown to be responsible for genetic disorders, Bloom, Werner and Rothmund-Thomson syndrome, respectively, which are characterized by cancer predisposition and premature ageing. RecQL4, the N-terminal portion of which shares similarity with Sld2 known to be required for assembly of a replication complex in yeasts, is unique in that it has been shown to be essential for the initiation phase of normal DNA replication. Recent biochemical characterization demonstrated the 3'-5' DNA helicase activity associated with RecQL4. Understanding the molecular basis for how RecQ helicases are involved in generation and maintenance of normal and stalled DNA replication forks would be crucial to elucidation of the mechanisms of replication initiation as well as to that of how the loss of these conserved helicases leads to varieties of disease phenotypes. 相似文献
9.
B C Valdez 《European journal of biochemistry》2000,267(21):6395-6402
RNA helicase II/Gu (RH II/Gu) is a nucleolar protein that unwinds dsRNA in a 5' to 3' direction, and introduces a secondary structure into a ssRNA. The helicase domain is at the N-terminal three-quarters of the molecule and the foldase domain is at the C-terminal quarter. The RNA folding activity of RH II/Gu is not a mere artifact of its binding to RNA. This study narrows down the RNA foldase domain to amino acids 749-801 at the C-terminus of the protein. Dissection of this region by deletion and site-directed mutagenesis shows that the four FRGQR repeats, as well as the C-terminal end bind RNA independently. These juxtaposed subdomains are both important for the RNA foldase activity of RH II/Gu. Mutation of either repeat 2 or repeat 4, or simultaneous mutation of Lys792, Arg793 and Lys797 at the C-terminal end of RH II/Gu to alanines inhibits RNA foldase activity. The last 17 amino acids of RH II/Gu can be replaced by an RNA binding motif from nucleolar protein p120 without a deleterious effect on its foldase activity. A model is proposed to explain how RH II/Gu binds and folds an RNA substrate. 相似文献
10.
11.
12.
To analyze the biochemical parameters of RNA editing in plant mitochondria and to eventually characterize the enzymes involved we developed a novel in vitro system. The high sensitivity of the mismatch-specific thymine glycosylase is exploited to facilitate reliable quantitative evaluation of the in vitro RNA editing products. A pea mitochondrial lysate correctly processes a C to U editing site in the cognate atp9 template. Reaction conditions were determined for a number of parameters, which allow first conclusions on the proteins involved. The apparent tolerance against specific Zn2+ chelators argues against the involvement of a cytidine deaminase enzyme, the theoretically most straightforward catalysator of the deamination reaction. Participation of a transaminase was investigated by testing potential amino group receptors, but none of these increased the RNA editing reaction. Most notable is the requirement of the RNA editing activity for NTPs. Any NTP or dNTP can substitute for ATP to the optimal concentration of 15 mm. This observation suggests the participation of an RNA helicase in the predicted RNA editing protein complex of plant mitochondria. 相似文献
13.
Tanaka T Mizukoshi T Taniyama C Kohda D Arai K Masai H 《The Journal of biological chemistry》2002,277(41):38062-38071
PriA protein is essential for RecA-dependent DNA replication induced by stalled replication forks in Escherichia coli. PriA is a DEXH-type DNA helicase, ATPase activity of which depends on its binding to structured DNA including a D-loop-like structure. Here, we show that the N-terminal 181-amino acid polypeptide can form a complex with D-loop in gel shift assays and have identified a unique motif present in the N-terminal segment of PriA that plays a role in its DNA binding. We have also identified residues in the C terminus proximal helicase domain essential for D-loop binding. PriA proteins mutated in this domain do not bind to D-loop, despite the presence of the N-terminal DNA-binding motif. Those mutants that cannot bind to D-loop in vitro do not support a recombination-dependent mode of DNA replication in vivo, indicating that binding to a D-loop-like structure is essential for the ability of PriA to initiate DNA replication and repair from stalled replication forks. We propose that binding of the PriA protein to stalled replication forks requires proper configuration of the N-terminal fork-recognition and C-terminal helicase domains and that the latter may stabilize binding and increase binding specificity. 相似文献
14.
K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. 总被引:13,自引:1,他引:13
下载免费PDF全文

We have examined the molecular mechanism of rapid inactivation gating in a mouse Shal K+ channel (mKv4.1). The results showed that inactivation of these channels follows a complex time course that is well approximated by the sum of three exponential terms. Truncation of an amphipathic region at the N-terminus (residues 2-71) abolished the rapid phase of inactivation (r = 16 ms) and altered voltage-dependent gating. Surprisingly, these effects could be mimicked by deletions affecting the hydrophilic C-terminus. The sum of two exponential terms was sufficient to describe the inactivation of deletion mutants. In fact, the time constants corresponded closely to those of the intermediate and slow phases of inactivation observed with wild-type channels. Further analysis revealed that several basic amino acids at the N-terminus do not influence inactivation, but a positively charged domain at the C-terminus (amino acids 420-550) is necessary to support rapid inactivation. Thus, the amphipathic N-terminus and the hydrophilic C-terminus of mKv4.1 are essential determinants of inactivation gating and may interact with each other to maintain the N-terminal inactivation gate near the inner mouth of the channel. Furthermore, this inactivation gate may not behave like a simple open-channel blocker because channel blockade by internal tetraethylammonium was not associated with slower current decay and an elevated external K+ concentration retarded recovery from inactivation. 相似文献
15.
Control of ColE1 plasmid replication: binding of RNA I to RNA II and inhibition of primer formation 总被引:26,自引:0,他引:26
J Tomizawa 《Cell》1986,47(1):89-97
16.
Brome mosaic virus 1a nucleoside triphosphatase/helicase domain plays crucial roles in recruiting RNA replication templates
下载免费PDF全文

Positive-strand RNA virus RNA replication is invariably membrane associated and frequently involves viral proteins with nucleoside triphosphatase (NTPase)/helicase motifs or activities. Brome mosaic virus (BMV) encodes two RNA replication factors: 1a has a C-terminal NTPase/helicase-like domain, and 2a(pol) has a central polymerase domain. 1a accumulates on endoplasmic reticulum membranes, recruits 2a(pol), and induces 50- to 70-nm membrane invaginations (spherules) serving as RNA replication compartments. 1a also recruits BMV replication templates such as genomic RNA3. In the absence of 2a(pol), 1a dramatically stabilizes RNA3 by transferring RNA3 to a membrane-associated, nuclease-resistant state that appears to correspond to the interior of the 1a-induced spherules. Prior results show that the 1a NTPase/helicase-like domain contributes to RNA recruitment. Here, we tested mutations in the conserved helicase motifs of 1a to further define the roles of this domain in RNA template recruitment. All 1a helicase mutations tested showed normal 1a accumulation, localization to perinuclear endoplasmic reticulum membranes, and recruitment of 2a(pol). Most 1a helicase mutants also supported normal spherule formation. Nevertheless, these mutations severely inhibited RNA replication and 1a-induced stabilization of RNA3 in vivo. For such 1a mutants, the membrane-associated RNA3 pool was both reduced and highly susceptible to added nuclease. Thus, 1a recruitment of viral RNA templates to a membrane-associated, nuclease-resistant state requires additional functions beyond forming spherules and recruiting RNA to membranes, and these functions depend on the 1a helicase motifs. The possibility that, similar to some double-stranded RNA viruses, the 1a NTPase/helicase-like domain may be involved in importing viral RNAs into a preformed replication compartment is discussed. 相似文献
17.
Escherichia coli DbpA is a member of the DEAD/H family of proteins which has been shown to have robust ATPase activity only in the presence of a specific region of 23S rRNA. A series of bimolecular RNA substrates were designed based on this activating region of rRNA and used to demonstrate that DbpA is also a non-processive, sequence-specific RNA helicase. The high affinity of DbpA for the RNA substrates allowed both single and multiple turnover helicase assays to be performed. Helicase activity of DbpA is dependent on the presence of ATP or dATP, the sequence of the loop of hairpin 92 of 23S rRNA and the position of the substrate helix with respect to hairpin 92. This work indicates that certain RNA helicases require particular RNA structures in order for optimal unwinding activity to be observed. 相似文献
18.
Katherine E. Sloan Matthias S. Leisegang Carmen Doebele Ana S. Ramírez Stefan Simm Charlotta Safferthal Jens Kretschmer Tobias Schorge Stavroula Markoutsa Sara Haag Michael Karas Ingo Ebersberger Enrico Schleiff Nicholas J. Watkins Markus T. Bohnsack 《Nucleic acids research》2015,43(1):553-564
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells. 相似文献
19.
RNA helicase II/Gu (RH-II/Gu) is a nucleolar RNA helicase of the DEAD-box superfamily. In this study, the functional domains of RH-II/Gu molecule were mapped by fusing the protein or its deletion mutants with a green fluorescence protein and subsequently transfecting or microinjecting the recombinant constructs into HeLa cells. In addition to the identification of a nuclear localization signal (NLS) in the N-terminus and a nucleolar targeting signal in the central helicase domain, a hidden NLS and a nucleolar targeting signal were found in the C-terminal arginine/glycine-rich domain. RH-II/Gu colocalized with fibrillarin, a component of the dense fibrillar region of the nucleolus. Overexpression of the entire RH-II/Gu protein or specific domains of the protein in HeLa cells did not interfere with the normal distribution of fibrillarin. However, when the helicase domain was truncated, the distribution pattern of fibrillarin was distorted. Microinjection of the wild-type RH-II/Gu cDNA into the nucleus of HeLa cells did not disrupt normal cell growth. However, when cells were injected with mutant DNA, only a small percentage of HeLa cells progressed through the cell cycle. Analysis of centrosomes in transfected cells demonstrated that most of the mutant-expressing cells were arrested early in the cell cycle. The results suggest that each of the structural domains of RH-II/Gu is necessary for cell growth and cell cycle progression. 相似文献
20.
Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I 总被引:6,自引:0,他引:6
下载免费PDF全文

Sumpter R Loo YM Foy E Li K Yoneyama M Fujita T Lemon SM Gale M 《Journal of virology》2005,79(5):2689-2699
Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection. 相似文献