首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍了近年来应用基因工程技术对植物油的脂肪酸成分进行改造, 进而生产有益于健康的食用油所取得的进展。近10年来, 应用基因修饰的方法对植物油进行营养学方面的改良已经取得了很大的进展, 随着植物脂肪酸生物合成途径的日趋明确, 通过转基因技术可以让植物生产许多含有特殊脂肪酸成分且对人类健康有益的植物油。  相似文献   

2.
基因工程在改善植物油营养价值中的应用   总被引:14,自引:3,他引:11  
本文介绍了近年来应用基因工程技术对植物油的脂肪酸成分进行改造,进而生产有益于健康的食用油所取得的进展.近10年来,应用基因修饰的方法对植物油进行营养学方面的改良已经取得了很大的进展,随着植物脂肪酸生物合成途径的日趋明确,通过转基因技术可以让植物生产许多含有特殊脂肪酸成分且对人类健康有益的植物油.  相似文献   

3.
Presence of unreacted glycerides in biodiesel may reduce drastically its quality. This is why conversion of raw material in biodiesel through transesterification needs to readjust reaction parameter values to complete. In the present work, monitoring of glycerides transformation in biodiesel during the transesterification of vegetable oils was carried out. To check the influence of the chemical composition on glycerides conversion, selected vegetable oils covered a wide range of fatty acid composition. Reactions were carried out under alkali-transesterification in the presence of methanol. In addition, a multiple regression model was proposed. Results showed that kinetics depends on chemical and physical properties of the oils. It was found that the optimal reaction temperature depends on both length and unsaturation degree of vegetable oils fatty acid chains. Vegetable oils with higher degree of unsaturation exhibit faster monoglycerides conversion to biodiesel. It can be concluded that fatty acid composition influences reaction parameters and glycerides conversion, hence biodiesel yield and economic viability.  相似文献   

4.
5.
Since ancient times the olive tree (Olea europaea), an evergreen drought- and moderately salt-tolerant species, has been cultivated for its oil and fruit in the Mediterranean basin. Olive is unique among the commercial important oil crops for many reasons. Today, it ranks sixth in the world's production of vegetable oils. Due to its nutritional quality, olive oil has a high commercial value compared with most other plant oils. Olive oil has a well-balanced composition of fatty acids, with small amounts of palmitate, and it is highly enriched in the moneonic acid oleate. This makes it both fairly stable against auto-oxidation and suitable for human health. Nevertheless, it is the presence of minor components, in particular phenolics, contributing for oil's high oxidative stability, color and flavor, that makes olive oil unique among other oils. Moreover, as a result of their demonstrated roles in the prevention of cancer and cardiovascular diseases, olive phenolics have gained much attention during the past years. Also unique to virgin olive oil is its characteristic aroma. This results from the formation of volatile compounds, namely, aldehydes and alcohols of six carbon atoms, which is triggered when olives are crushed during the process of oil extraction. The biochemistry of the olive tree is also singular. O. europaea is one of the few species able to synthesize both polyols (mannitol) and oligosaccharides (raffinose and stachyose) as the final products of the photosynthetic CO(2) fixation in the leaf. These carbohydrates, together with sucrose, can be exported from leaves to fruits to fulfill cellular metabolic requirements and act as precursors to oil synthesis. Additionally, developing olives contain active chloroplasts capable of fixing CO(2) and thus contributing to the carbon economy of the fruit. The overall quality of table olives and olive oil is influenced by the fruit ripening stage. Olive fruit ripening is a combination of physiological and biochemical changes influenced by several environmental and cultural conditions, even if most events are under strict genetic control.  相似文献   

6.
Fourier transform Raman spectroscopy has been used to investigate the chemical changes taking place during lipid oxidation in several edible oils. Oxidative degradation of six vegetable oils was accelerated by heating at 160 degrees C. Formation of aldehydes was detected, and saturated as well as alpha,beta-unsaturated aldehydes could be identified with the help of pure component spectra. The formation of conjugated double bond systems and the isomerisation of cis to trans double bonds was observed in the C=C stretching region and found to follow a distinct pattern for the different oils. It was possible to associate these differences to the fatty acid composition. The time-dependent intensity changes in certain Raman bands were compared to conventional parameters used to determine the extent of oxidation in oils, such as anisidine value and K(270), and showed good correlation.  相似文献   

7.
8.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

9.
Natural genetic variation in fatty acid synthesis and modification pathways determine the composition of vegetable oils, which are major components of human diet and renewable products. Based on known pathways we combined diversity and genetic analysis of metabolites to infer the existence of enzymes encoded by distinct loci, and associated these with specific elongation steps or subpathways. A total of 107 lines representing different Brassica genepools revealed considerable variation for 18 seed fatty acid products. The effect of genetic variation within a single biochemical step on subsequent products was demonstrated using a correlation matrix of scatterplots, and by calculating relative step yields. Surprisingly, diploid Brassica oleracea segregating populations had a similar range of variation for individual fatty acids as across the whole genepool. This allowed identification of 22 quantitative trait loci (QTL) associated with activity in the plastid, early stages of synthesis, desaturation, and elongases. Four QTL were assigned to early stages of synthesis, seven to subpathway specific or general elongase activity, one to ketoacyl acyl-carrier protein synthetase, and two each to fatty acid desaturase and either desaturase or fatty acyl-carrier protein thioesterase. An additional 10 QTL had distinct effects but were not assigned specific functions. Where contrasting behavior in more than one subpathway was detected, we inferred QTL specificity for particular combinations of substrate and product. The assignment of enzyme function to QTL was consistent with the known position of some Brassicaeae candidate genes and collinear regions of the Arabidopsis (Arabidopsis thaliana) genome.  相似文献   

10.
11.
鱼类脂肪与脂肪酸的转运及调控研究进展   总被引:6,自引:0,他引:6  
由于鱼油资源短缺, 植物油在水产饲料中广泛使用。然而, 随之而来的鱼体脂肪异常沉积等问题也日益突出, 严重危害养殖鱼类健康。脂肪的沉积是一个复杂的过程, 主要包括脂肪的合成、转运和分解。到目前为止, 在鱼类中已经进行了大量关于植物油替代鱼油影响脂肪沉积的研究。但是, 这些研究主要集中于脂肪的合成和分解, 有关脂肪转运的研究十分缺乏。脂肪转运不仅是影响组织脂肪沉积的重要因素, 而且在机体脂稳态和能量平衡中起着重要作用。因此综述了鱼类脂蛋白的种类和组成, 鱼类对脂肪和脂肪酸的转运, 营养因素对脂肪和脂肪酸转运的影响, 指出了脂类转运研究的重要性和紧迫性, 并且提出了未来需要努力的方向。  相似文献   

12.
Bioremediation technologies are used in order to remove pollutants from the environment in a safe, economical and harmless way during the treatment of waste, especially with the use of techniques such as biodegradation. A lubricant and vegetable oil contaminated water sample was studied in order to evaluate the biodegradability of different types of oils, considering the relevance of the obtained data in the bioremediation procedures. The objective of this paper is to use respirometry technique as a biodegradation process data source, and then apply to the obtained data the experimental design of mathematical models to characterize and determinate how the different types of oils are capable of affecting the parameters in biodegradation kinetics. The kinetics was then evaluated through selected models with a reasonable fit to experimental data. The Bartha and Pramer respirometer is used as a method to accurately measure the CO2 formation in the organic compounds degradation by microorganisms. Therefore, the difference in biodegradation efficiency process is compared in the different groups of oils using mathematical models fitting the obtained data for the kinetics of biodegradation. The results demonstrated that used lubricant automotive oils are more susceptible to the biodegradation process, since their molecular structures had already been altered after use. In general, automotive lubricant oils shown better performance in biodegradation than vegetable oils. The models proposed for the obtained data in each of these assays demonstrated that vegetable oils biodegradation rate tends to decrease faster and end sooner than the automotive oils. Also, the modeling predicted that higher rates of biodegradation and total CO2 production are to be expected in automotive lubricant oils rather than vegetable oils.  相似文献   

13.
14.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

15.
Ayurveda, an ancient and comprehensive system of natural medicine, recommends regular topical application to the skin of sesame oil, above all other oils, as a health-promoting procedure. We examined the effect of sesame oil and several other vegetable oils and their major component fatty acids on the proliferation rate of human normal and malignant melanocytes growing at similar rates in serum-free media. We found that sesame and safflower oils, both of which contain large amounts of linoleate in triglyceride form, selectively inhibited malignant melanoma growth over normal melanocytes whereas coconut, olive and mineral oils, which contain little or no linoleate as triglyceride, did not. These oils were tested at a range of 10-300 micrograms/ml. We found that of the fatty acids tested, only linoleic acid was selectively inhibitory while palmitic and oleic were not. These fatty acids were tested in the range of 3-100 micrograms/ml. These results suggest that certain vegetable oils rich in linoleic acid, such as the sesame oil, recommended for topical use by Ayurveda, may contain selective antineoplastic properties which are similar to those demonstrated for essential polyunsaturated fatty acids and their metabolites. This suggests that whole vegetable oils may have potential clinical usefulness.  相似文献   

16.
Hansen solubility parameters (HSPs), often used to predict the miscibility between two compounds, are an alternative tool in evaluating the ability of the solvent to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. The aim of this paper is to find a simple way to calculate HSPs for complex mixtures of triglycerides (TAGs). HSPs were calculated using two approaches: the first assumes that the contributions to the dispersion, dipole-dipole, and hydrogen bonding interactions may be subdivided into larger functional moieties (i.e., fatty acids and fatty acid methyl esters) that are additive, while the second approach assumes that vegetable oils are comprised of mixtures of simple TAGs in the same mass fractions as the fatty acids. The HSPs obtained using the two approaches are compared to reference values determined using the “Hansen Solubility Parameters in Practice” software (HSPiP) considering the complex TAG profile for each vegetable oil.HSPs for vegetable oils, obtained with the HSPiP software, did not correspond well to the HSPs obtained from the group contribution approach, when using fatty acids, fatty acids + glycerol or fatty acid methyl esters. In contrast, the HSPs calculated for vegetable oils, assuming that all TAGs are simple and in the same mass fractions as the fatty acids, provide similar values to the HSPs obtained from the HSPiP software. Therefore, it is possible to calculate the HSPs for complex oils by simply knowing the fatty acid composition. Knowledge of HSPs may be used to rationalize the ability of certain low molecular weight molecules to develop organogels in vegetable oils as well as the crystallization of triglycerides.  相似文献   

17.
The effect of different quantities and kinds of vegetable and animal oils and the importance of the time of the oil addition on growth and protease synthesis by T. vulgaris was investigated. The used oils stimulate the protease production if they are added in a suitable concentration. However, the stimulation effect of each oil is different. Culture inoculation with spores gives the best results, when oil was added to the medium 1 up to 2 hours after beginning of the fermentation. The enzyme activity is equal to or lower than the control, when the oil addition was carried out before or 3 hours after starting the fermentation.  相似文献   

18.
A green, downstream process using common vegetable oils was used for the direct extraction of astaxanthin from Haematococcus. The process consists of a single integrated unit to extract astaxanthin with subsequent separation of the astaxanthin-containing oil extract. Without a cell harvest process step, the culture broth was directly mixed with the vegetable oils; the astaxanthin inside the cell was extracted into the vegetable oil phase by hydrophobic interactions, with recovery yields of 88% and above. The oil extracts were simply separated from the culture medium containing cell debris by gravity settling only.  相似文献   

19.
Vegetable oils are an essential component of human diet, in terms of their health beneficial roles. Despite their importance, the fatty acid profile of most commonly used edible oil seed crop plants are imbalanced; this skewed ratio of fatty acids in the diet has been shown to be a major reason for the occurrence of cardiovascular and autoimmune diseases. Until recently, it was not possible to exert significant control over the fatty acid composition of vegetable oils derived from different plants. However, the advent of metabolic engineering, knowledge of the genetic networks and regulatory hierarchies in plants have offered novel opportunities to tailor-made the composition of vegetable oils for their optimization in regard to food functionality and dietary requirements. Sesame (Sesamum indicum L.) is one of the ancient oilseed crop in Indian subcontinent but its seed oil is devoid of balanced proportion of ω-6:ω-3 fatty acids. A recent study by our group has shed new lights on metabolic engineering strategies for the purpose of nutritional improvement of sesame seed oil to divert the carbon flux from the production of linoleic acid (C18:2) to α-linolenic acid (C18:3). Apart from that, this review evaluates current understanding of regulation of fatty acid biosynthetic pathways in sesame and attempts to identify the major options of metabolic engineering to produce superior sesame seed oil.  相似文献   

20.
植物含油量相关转录因子WRINKLED1的研究进展   总被引:1,自引:0,他引:1  
植物油具有重要的食用和工业价值,对其需求越来越大。提高作物种子含油量育种一直在进行,与通过单一限速酶的遗传工程法相比,利用转相关转录因子基因改造植物脂肪代谢过程是更好选择之一。介绍植物含油量相关转录因子WRINKLED1的发现、结构、功能、调控、基因工程和聚类分析等,并对其应用前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号