首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
α-Crystallin, an abundant eye-lens protein and a stress protein in other tissues, shows structural and functional similarities with the small heat-shock proteins. One of the properties in common is the inhibition of elastase. We now report that the separated subunits of α-crystallin, αA and αB,also exhibit elastase inhibition, whereas phosphorylation of these subunits apparently has no influence on the inhibitory capacity. Furthermore, for both αA-crystallin and mouse HSP25 the putative C-terminal structural domain, comprising the major region of homology between these proteins, is sufficient to give elastase inhibition. With database search no homology could be found between the three proteins under investigation and any of the known consensus sequences of proteinase inhibitor families.  相似文献   

2.
Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.  相似文献   

3.
Amyloid beta (Aβ) is a major causative agent of Alzheimer disease (AD). This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of β-secretase and γ-secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial AD and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between AD and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.Key words: Alzheimer disease, amyloid β, apoptosis, 37 kDa/67 kDa laminin receptor, prion proteinsAlzheimer disease (AD), primarily defined by psychiatrist Alois Alzheimer in 1906, is a neurodegenerative disorder and currently exhibits a prevalence that “doubles approximately every five years from 0.5% at the common age of onset-65 years old.”1 This disease is the most common form of dementia afflicting the elderly and at present affects in excess of 37 million people globally2 and it is predicted that 100 million people will be living with the disease by 2050.3AD has received mounting scientific interest and has stimulated tireless research endeavours not only due to the complex mechanism by which it is caused; the multitude of contributing factors and contradictions which have arisen between hypotheses and acquired results, but also due to the rise in life expectancies4 owing to the advent of modern medicine, which has socio-economic implications particularly in terms of strain placed upon national health systems.  相似文献   

4.
《朊病毒》2013,7(3):126-137
Amyloid β (Aβ) is a major causative agent of Alzheime disease. This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of beta secretase and gamma secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial Alzheimer disease and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between Alzheimer disease and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.  相似文献   

5.
Myristylation often governs the targeting of protein kinases to the plasma membrane. It is now known that a key member of the src family of protein tyrosine kinases, pp60v-src, binds to the lipid bilayer of the plasma membrane via a myristylated amino terminal sequence. The mechanism of this interaction is not known; however, myristic acid (Myristic acid may also be referred to as Myristate) and residues 2 through 14 are also absolutely required (Resh and Ling, 1990). This review presents an analysis of crystal structures of detergent-modified recombinant and myristylated mammalian catalytic subunit of protein kinase A. Crystals of unmyristylated recombinant catalytic subunit of protein kinase A are grown in the presence of Mega 8, a glucamide-type of detergent, and only this detergent binds, which results in a resolution extension (Knightonet al., 1991a). Comparisons of these two structures reveal that the detergent association with the recombinant enzyme binds in exactly the same hydrophobic pocket of the protein occupied by myristic acid in the mammalian protein (Karlssonet al., 1993; Zhenget al., 1993a). Removal of the detergent through soaking results in the local unwinding of the first helix, helix A, and disorder of the canonical recognition sequence of the phosphorylation site, Ser 10 (Zhenget al., 1993b). These results suggest that anchoring the myristic acid inside the protein results in formation of a stable structural template, which includes the myristylated amino terminal sequence important for the recognition by protein kinases. This inside out motif might provide a structural paradigm for the recognition of myristylated proteins, including pp60v-src.  相似文献   

6.
A subset of familial Parkinson's disease (PD) cases is associated with the presence of disease-causing point mutations in human α-synuclein [huAS(wt)], including A53T. Surprisingly, the human neurotoxic amino acid 53T is present in non-primate, wild-type sequences of α-synucleins, including that expressed by mice [mAS(wt)]. Because huAS(A53T) causes neurodegeneration when expressed in rodents, the amino acid changes between the wild-type human protein [huAS(wt)] and mAS(wt) might act as intramolecular suppressors of A53T toxicity in the mouse protein, restoring its physiological structure and function. The lack of structural information for mAS(wt) in aqueous solution has prompted us to conduct a comparative molecular dynamics study of huAS(wt), huAS(A53T), and mAS(wt) in water at 300 K. The calculations are based on an ensemble of nuclear magnetic resonance-derived huAS(wt) structures. huAS(A53T) turns out to be more flexible and less compact than huAS(wt). Its central (NAC) region, involved in fibril formation by the protein, is more solvent-exposed than that of the wild-type protein, in agreement with nuclear magnetic resonance data. The compactness of mAS(wt) is similar to that of the human protein. In addition, its NAC region is less solvent-exposed and more rigid than that of huAS(A53T). All of these features may be caused by an increase in the level of intramolecular interactions on passing from huAS(A53T) to mAS(wt). We conclude that the presence of "compensatory replacements" in the mouse protein causes a significant change in the protein relative to huAS(A53T), restoring features not too dissimilar to those of the human protein.  相似文献   

7.
Summary Phylogenetic relationships were examined among 35 -crystallin-related heat-shock proteins from animals, plants, and fungi. Approximately one-third of the aligned amino acids in these proteins were conserved in 74% of the proteins, and three blocks of consensus sequence were identified. Relationships were established by maximum parsimony and distance matrix analyses of the aligned amino acid sequences. The inferred phylogeny trees show the plant proteins clearly divided into three major groups that are unrelated to taxonomy: the chloroplast-localized proteins and two groups that originate from a common ancestral plant protein. The animal proteins, in contrast, branch in accordance with taxonomy, the only clear exception being the -crystallin subgrouping of vertebrates. This analysis indicates that the small heat-shock proteins of animals have diverged more widely than have the plant proteins, one group of which is especially stable.Offprint requests to: N. Plesofsky-Vig  相似文献   

8.
Raborn J  Wang W  Luo BH 《Biochemistry》2011,50(12):2084-2091
The ability of αIIbβ3 to bind ligands and undergo outside-in signaling is regulated by three divalent cation binding sites in the β I domain. Specifically, the metal ion-dependent adhesion site (MIDAS) and the synergistic metal binding site (SyMBS) are thought to be required for ligand binding due to their synergy between Ca(2+) and Mg(2+). The adjacent to MIDAS (ADMIDAS) is an important ligand binding regulatory site that also acts as a critical link between the β I and hybrid domains for signaling. Mutations in this site have provided conflicting results for ligand binding and adhesion in different integrins. We have mutated the β3 SyMBS and ADMIDAS. The SyMBS mutant abolished ligand binding and outside-in signaling, but when an activating glycosylation mutation in the αIIb Calf 2 domain was introduced, the ligand binding affinity and signaling were restored. Thus, the SyMBS is important but not absolutely required for integrin bidirectional signaling. The ADMIDAS mutants showed reduced ligand binding affinity and abolished outside-in signaling, and the activating glycosylation mutation could fully restore integrin signaling of the ADMIDAS mutant. We propose that the ADMIDAS ion stabilizes the low-affinity state when the integrin headpiece is in the closed conformation, whereas it stabilizes the high-affinity state when the headpiece is in the open conformation with the swung-out hybrid domain.  相似文献   

9.
The C-terminal domain and tail, which is the most conserved region of the -crystallin/small heat shock protein (HSP) family, was obtained from rat A-crystallin, bovine B-crystallin and mouse HSP25. All three domains have primarily -sheet conformation and less than 10% of -helix, like the proteins from which they are derived. Whereas the C-terminal part of A-crystallin forms dimers or tetramers, the corresponding regions of B-crystallin and HSP25 form larger aggregates. The heat-protective activity, recently described for the -crystallin/small HSP family, is not retained in the C-terminal domain and tail. In the course of this study some differences with the previously published sequence of HSP25 were observed, and a revision is proposed.Abbreviations A2Dt residues 64–173 of rat -crystallin - B2Dt residues 70–175 of bovine B-crystallin - bp base pair - HSP2Dt residues 92–209 of HSP25 - HSP(s) heat shock protein(s) - HSP25 mouse small HSP - PCR polymerase chain reaction - PMSF phenylmethylsulfonyl chloride - SDS sodium dodecyl sulfate; polyacrylamide - WSF water-soluble fraction  相似文献   

10.
  • 1.1. Studies have been performed on untreated and heavy metal treated Hydra attenuata in order to reveal the presence of low mol. wt metal-binding proteins.
  • 2.2. A prepared rat metallothionein (Mt) standard, gel permeation, polyacrylamide gel electrophoresis and autoradiographic techniques were used in the experiments.
  • 3.3. Our results indicate that H. attenuata, and three species of marine coelenterates, lack metallothionein (Mt) or other metal binding proteins.
  相似文献   

11.
1. Specific lipoproteins binding alpha-tocopherol but not its known metabolites have been isolated and identified from cytosol of rat intestinal mucosa and from serum. 2. A timestudy of the appearance of the orally administered alpha-[(3)H]tocopherol with these lipoproteins indicates that very-low-density lipoprotein of serum acts as a carrier of the vitamin. 3. The involvement of the mucosal lipoprotein in the absorption of the vitamin from the intestine has been inferred from observations on the amounts of alpha-tocopherol in serum of orotic acid-fed rats where release of lipoproteins from the liver to serum is completely inhibited. A considerable decrease in the association of alpha-tocopherol with serum very-low-density lipoprotein under this condition is interpreted to mean that serum lipoproteins are limiting factors for the transport of the vitamin across the intestine and that this is possibly effected by exchange of alpha-tocopherol between serum very-low-density lipoprotein and mucosal lipoprotein.  相似文献   

12.
The vesicle-inducing protein in plastids 1 (Vipp1) is an essential component for thylakoid biogenesis in cyanobacteria and chloroplasts. Vipp1 proteins share significant structural similarity with their evolutionary ancestor PspA (bacterial phage shock protein A), namely a predominantly α-helical structure, the formation of oligomeric high molecular weight complexes (HMW-Cs) and a tight association with membranes. Here, we elucidated domains of Vipp1 from Arabidopsis thaliana involved in homo-oligomerization as well as association with chloroplast inner envelope membranes. We could show that the 21 N-terminal amino acids of Vipp1, which form the first α-helix of the protein, are essential for assembly of the 2 MDa HMW-C but are not needed for formation of smaller subcomplexes. Interestingly, removal of this domain also interferes with association of the Vipp1 protein to the inner envelope. Fourier transform infrared spectroscopy of recombinant Vipp1 further indicates that Escherichia coli lipids bind tightly enough that they can be co-purified with the protein. This feature also depends on the presence of the first helix, which strongly supports an interaction of lipids with the Vipp1 HMW-C but not with smaller subcomplexes. Therefore, Vipp1 oligomerization appears to be a prerequisite for its membrane association. Our results further highlight structural differences between Vipp1 and PspA, which might be important in regard to their different function in thylakoid biogenesis and bacterial stress response, respectively.  相似文献   

13.
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.  相似文献   

14.
Oxidative stress, Cu2+ homeostasis, and small heat shock proteins (sHsp's) have important implications in several neurodegenerative diseases. The ubiquitous sHsp αB-crystallin is an oligomeric protein that binds Cu2+. We have investigated the relative contributions of the N- and C-terminal (C-TDαB-crystallin) domains of αB-crystallin to its Cu2+-binding and redox-attenuation properties and mapped the Cu2+-binding regions. C-TDαB-crystallin binds Cu2+ with slightly less affinity and inhibits Cu2+-catalyzed, ascorbate-mediated generation of ROS to a lesser extent than αB-crystallin. [Cu2+]/[subunit] stoichiometries for redox attenuation by αB-crystallin and C-TDαB-crystallin are 5 and 2, respectively. Both αB-crystallin and C-TDαB-crystallin also inhibit the Fenton reaction of hydroxyl radical formation. Trypsinization of αB-crystallin bound to a Cu2+-NTA column and MALDI-TOF analysis of column-bound peptides yielded three peptides located in the N-terminal domain, and in-solution trypsinization of αB-crystallin followed by Cu2+-NTA column chromatography identified four additional Cu2+-binding peptides located in the C-terminal domain. Thus, Cu2+-binding regions are distributed in the N- and C-terminal domains. Small-angle X-ray scattering and sedimentation-velocity measurements indicate quaternary structural changes in αB-crystallin upon Cu2+ binding. Our study indicates that an oligomer of αB-crystallin can sequester a large number (~ 150) of Cu2+ ions. It acts like a “Cu2+ sponge,” exhibits redox attenuation of Cu2+, and has potential roles in Cu2+ homeostasis and in preventing oxidative stress.  相似文献   

15.
The ever-increasing number of proteins identified as belonging to the family of small heat-shock proteins (shsps) and -crystallins enables us to reassess the phylogeny of this ubiquitous protein family. While the prokaryotic and fungal representatives are not properly resolved, most of the plant and animal shsps and related proteins are clearly grouped in distinct clades, reflecting a history of repeated gene duplications. The members of the shsp family are characterized by the presence of a conserved homologous -crystallin domain, which sometimes is present in duplicate. Predictions are made of secondary structure and solvent accessibility of this domain, which together with hydropathy profiles and intron positions support the presence of two similar hydrophobic -sheet-rich motifs, connected by a hydrophilic -helical region. Together with an overview of the newly characterized members of the shsp family, these data help to define this family as being involved as stable structural proteins and as molecular chaperones during normal development and induced under pathological and stressful conditions.Correspondence to: W.W. de Jong  相似文献   

16.
CK2 is a Ser/Thr protein kinase essential for cell viability. Its activity is anomalously high in several solid (prostate, mammary gland, lung, kidney and head and neck) and haematological tumours (AML, CML and PML), creating conditions favouring the onset of cancer. Cancer cells become addicted to high levels of CK2 activity and therefore this kinase is a remarkable example of "non-oncogene addiction". CK2 is a validated target for cancer therapy with one inhibitor in phase I clinical trials. Several crystal structures of CK2 are available, many in complex with ATP-competitive inhibitors, showing the presence of regions with remarkable flexibility. We present the structural characterisation of these regions by means of seven new crystal structures, in the apo form and in complex with inhibitors. We confirm previous findings about the unique flexibility of the CK2α catalytic subunit in the hinge/αD region, the p-loop and the β4β5 loop, and show here that there is no clear-cut correlation between the conformations of these flexible zones. Our findings challenge some of the current interpretations on the functional role of these regions and dispute the hypothesis that small ligands stabilize an inactive state. The mobility of the hinge/αD region in the human enzyme is unique among protein kinases, and this can be exploited for the development of more selective ATP-competitive inhibitors. The identification of different ligand binding modes to a secondary site can provide hints for the design of non-ATP-competitive inhibitors targeting the interaction between the α catalytic and the β regulatory subunits.  相似文献   

17.
BackgroundThe eye lens crystallins are highly soluble proteins that are required to last the lifespan of an organism due to low protein turnover in the lens. Crystallin aggregation leads to formation of light-scattering aggregates known as cataract. The G18V mutation of human γS-crystallin (γS-G18V), which is associated with childhood-onset cataract, causes structural changes throughout the N-terminal domain and increases aggregation propensity. The holdase chaperone protein αB-crystallin does not interact with wild-type γS-crystallin, but does bind its G18V variant. The specific molecular determinants of αB-crystallin binding to client proteins is incompletely charcterized. Here, a new variant of γS, γS-G18A, was created to test the limits of αB-crystallin selectivity.MethodsMolecular dynamics simulations were used to investigate the structure and dynamics of γS-G18A. The overall fold of γS-G18A was assessed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence. Its thermal unfolding temperature and aggregation propensity were characterized by CD and DLS, respectively. Solution-state NMR was used to characterize interactions between αB-crystallin and γS-G18A.ResultsγS-G18A exhibits minimal structural changes, but has compromised thermal stability relative to γS-WT. The placement of alanine, rather than valine, at this highly conserved glycine position produces minor changes in hydrophobic surface exposure. However, human αB-crystallin does not bind the G18A variant, in contrast to previous observations for γS-G18V, which aggregates at physiological temperature.ConclusionsαB-crystallin is capable of distinguishing between aggregation-prone and function-preserving variants, and recognizing the transient unfolding or minor conformers that lead to aggregation in the disease-related variant.General significanceHuman αB-crystallin distinguishes between highly similar variants of a structural crystallin, binding the cataract-related γS-G18V variant, but not the function-preserving γS-G18A variant, which is monomeric at physiological temperature.  相似文献   

18.
Partial hydrolysis of whey-based α-lactalbumin (α-La) with Bacillus licheniformis protease (BLP) induces the formation of nanotubular structures in the presence of calcium ions by a self-assembly process. α-La nanotubes (α-LaNTs) exist in the form of regular hollow strands with well-defined average dimensions. The growth of nanotubes induces the formation of stiff transparent protein gels due to the well-arranged networks that the strands can form; these gels can be used for entrapment, transportation, and target delivery of bioactive agents in the industry. High purity of α-La (free of other whey protein fractions) is desirable for nanotube formation; however, pure proteins are very expensive and not practically obtained for industrial applications. Thus, the purpose of this research was to construct α-LaNTs from an α-La preparation with lower purity and to study the gelation phenomena triggered by the self-assembled nanotubes. Some structural features of nanotube gels and their active agent-binding abilities were also investigated. A lower amount of α-LaNTs was observed when low purity α-La was used for nanotube formation. Nanotube growth induced gel formation and higher gel stiffness was obtained when compared to α-La hydrolysates. α-La was denatured after hydrolysis and self-assembly, and remarkable changes were observed in the α-helix and β-sheet domains of α-La structure. Increased intensity in Amide I and II regions indicated potential locations for binding of active agents to α-LaNTs. Whey-based α-La without much purification can be used to produce nanotubular gels and these gels can be considered carrying matrices for active agents in various industrial applications.  相似文献   

19.
α-Synuclein (α-Syn) aggregation/fibrillation is a leading cause of neuronal death and is one of the major pathogenic factors involved in the progression of Parkinson's' disease (PD). Against this backdrop, discovering new molecules as inhibitors or modulators of α-Syn aggregation/fibrillation is a subject of enormous research. In this study, we have shown modulation, disaggregation, and neuroprotective potential of aloin and emodin against α-Syn aggregation/fibrillation. Thioflavin T (ThT) fluorescence assay showed an increase in lag phase from (51.14 ± 2) h to (68.58 ± 2) h and (74.14 ± 3) h in the presence of aloin and emodin respectively. ANS binding assay represents a modulatory effect of these molecules on hydrophobicity which is crucial for aggregates/fibril formation. NMR spectroscopy and tyrosine quenching studies reveal the binding of aloin/emodin with monomeric α-Syn. TEM and DLS micrographs illustrate the attenuating effect of aloin/emodin against the development of large aggregates/fibrils. Our seeding experiments suggest aloin/emodin generate seeding incompetent oligomers that direct the off-pathway aggregation/fibrillation. Also, aloin/emodin capably reduces the fibrils-induced cytotoxicity and disassembles the preexisting amyloid fibrils. These findings provide deep insight into the modulatory mechanism of α-Syn aggregation/fibrillation in the presence of aloin and emodin, thereby suggesting their potential roles as promising therapeutic molecules against aggregation/fibrillation related disorders.  相似文献   

20.
The micronuclear genes encoding α-telomere-binding protein (αTP) in Oxytricha trifallax and Stylonychia mytilus contain multiple internal eliminated segments, or IESs, that divide the gene into multiple parts called macronuclear destined segments, or MDSs. The MDSs have become disordered, or scrambled, during evolution. The scrambled structures of the αTP genes in Oxytricha trifallax and S. mytilus have been compared with the previously published scrambled structure of the αTP gene in O. nova. The scrambled patterns of the αTP gene in the three species are similar but show significant differences. The micronuclear genes in O. nova and S. mytilus consist of 13 IESs and 14 MDSs, but the gene in O. trifallax is divided into three additional MDSs by the presence of three additional IESs, believed to have been inserted into the O. trifallaxαTP gene after divergence of O. trifallax from the other two species. Corresponding IESs among the three species have shifted along the DNA during evolution, presumably by a mutational mechanism that changes the short repeat sequences that flank IESs. The IESs also have changed markedly in length by insertion and/or deletion of nucleotides. Comparison of the putative αTP amino acid sequences in the three species reveals three conserved and three nonconserved domains. The 5′ nontranslated regions of the gene-sized molecules encoding αTP contain several conserved segments, and the 3′ nontranscribed trailer contains one conserved segment. Received: 29 May 1998; in revised form: 3 August 1998 / Accepted: 18 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号