首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adhesion of leukocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for leukocytes, cytokines may regulate leukocyte accumulation and hence the nature and progression of inflammatory responses. We have found that the T cell cytokine IL-4 increases the adhesion of T cells, but not neutrophils, to human umbilical vein EC monolayers. The increase in T cell adhesion induced by IL-4 was dose dependent (ED50 = 5 U/ml) and peaked around 33 U/ml. No increase in adhesion of neutrophils was observed at concentrations of IL-4 up to 1000 U/ml. The kinetic of the increase in T cell adhesion exhibited a steady rise peaking between 18 and 24 h before returning to basal levels by 72 h. The IL-4 specificity of the effect was confirmed by the ability of neutralizing anti-IL-4, but not anti-TNF, antibodies to abolish the effect. The increase in T cell-EC adhesion was due to an effect of IL-4 on EC inasmuch as preincubation of the T cells with IL-4 did not increase T cell binding. Furthermore, preincubation of A549 epithelial cell line monolayers with IL-4 caused no increase in T cell binding whereas A549 cells and EC showed a similarly enhanced adhesiveness for T cells after preincubation with IL-1, TNF, or IFN-gamma. EC treated with IL-4 retained their increased adhesiveness for T cells after light fixation, suggesting that IL-4 up-regulates binding by increasing the expression or accessibility of EC surface receptors for lymphocytes. Although antibodies to intercellular adhesion molecule-1 (CD54) and the beta-chain (CD18) of lymphocyte function-associated Ag-1 (CD11a/CD18) partially inhibited T cell adhesion to unstimulated EC, they did not affect the increase in adhesion due to IL-4 stimulation, indicating that the increased binding resulted from the generation of an alternative binding receptor(s) on the EC membrane. These findings suggest that IL-4 may play a role in the selective recruitment of T cells into sites of immune-mediated chronic inflammation.  相似文献   

2.
Irradiation exposure is known to induce an inflammatory reaction. Endothelial cells play a crucial role both in the inflammatory process and in radiation damage. Therefore, supernatants and cell lysates of (60)Co-irradiated human umbilical vein endothelial cells (HUVEC) have been assessed for the presence of pro-inflammatory cytokines. After gamma irradiation, interleukin (IL)-1alpha, IL-1beta and tumor necrosis factor (TNF)-alpha remained undetectable in both cell supernatants and cell lysates. However, a dose-dependent increase in the production of IL-6 and IL-8 has been demonstrated up to 6 days after exposure. These data indicate that the pro-inflammatory cytokines IL-6 and IL-8 may be involved in the inflammatory response of vascular endothelium induced by exposure to ionizing radiation.  相似文献   

3.
4.
This study has investigated the effect of cellular cholesterol on membrane deformability of bovine aortic endothelial cells. Cellular cholesterol content was depleted by exposing the cells to methyl-beta-cyclodextrin or enriched by exposing the cells to methyl-beta-cyclodextrin saturated with cholesterol. Control cells were treated with methyl-beta-cyclodextrin-cholesterol at a molar ratio that had no effect on the level of cellular cholesterol. Mechanical properties of the cells with different cholesterol contents were compared by measuring the degree of membrane deformation in response to a step in negative pressure applied to the membrane by a micropipette. The experiments were performed on substrate-attached cells that maintained normal morphology. The data were analyzed using a standard linear elastic half-space model to calculate Young elastic modulus. Our observations show that, in contrast to the known effect of cholesterol on membrane stiffness of lipid bilayers, cholesterol depletion of bovine aortic endothelial cells resulted in a significant decrease in membrane deformability and a corresponding increase in the value of the elastic coefficient of the membrane, indicating that cholesterol-depleted cells are stiffer than control cells. Repleting the cells with cholesterol reversed the effect. An increase in cellular cholesterol to a level higher than that of normal cells, however, had no effect on the elastic properties of bovine aortic endothelial cells. We also show that although cholesterol depletion had no apparent effect on the intensity of F-actin-specific fluorescence, disrupting F-actin with latrunculin A abrogated the stiffening effect. We suggest that cholesterol depletion increases the stiffness of the membrane by altering the properties of the submembrane F-actin and/or its attachment to the membrane.  相似文献   

5.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

6.
Tunicamycin is anucleoside antibiotic that inhibits protein glycosylation andpalmitoylation. The therapeutic use of tunicamycin is limited inanimals because of its toxic effects, particularly in cerebralvasculature. Tunicamycin decreases palmitoylation of the endothelialisoform of nitric oxide synthase, stimulates nitric oxide synthesis,and increases the concentration of intracellular calcium([Ca2+]i)in bovine aortic endothelial cells (B. J. Buckley and A. R. Whorton.FASEB J. 11: A110, 1997). In the present study,we investigated the mechanism by which tunicamycin alters[Ca2+]iusing the Ca2+-sensitive dye fura2. We found that tunicamycin increased[Ca2+]iwithout increasing levels of inositol phosphates. When cells wereincubated in the absence of extracellularCa2+,[Ca2+]irapidly rose in response to tunicamycin, although a full response wasnot achieved. The pool of intracellularCa2+ mobilized by tunicamycinoverlapped with that mobilized by thapsigargin. Extracellular nickelblocked a full response to tunicamycin when cells were incubated in thepresence of extracellular Ca2+.The effects of tunicamycin on[Ca2+]iwere partially reversed by washing out the drug, and the remainder ofthe response was inhibited by removing extracellularCa2+. These results indicate thattunicamycin mobilizes Ca2+ fromintracellular stores in a manner independent of phospholipase Cactivation and increases the influx ofCa2+ across the plasma membrane.

  相似文献   

7.
Genome damaging events, such as gamma-irradiation exposure, result in the induction of pathways that activate DNA repair mechanisms, halt cell cycle progression, and/or trigger apoptosis. We have investigated the effects of gamma-irradiation on cellular levels of the Ku autoantigens. Ku70 and Ku80 have been shown to form a heterodimeric complex that can bind tightly to free DNA ends and activate the protein kinase DNA-PKcs. We have found that irradiation results in an up-regulation of cellular levels of Ku70, but not Ku80, and that this enhanced level of Ku70 accumulates within the nucleus. Further, we uncovered that the postirradiation up-regulation of Ku70 utilizes a mechanism that is dependent on both p53 and damage response protein kinase ATM (ataxia-telangiectasia-mutated); however, the activation of DNA-PK does not require Ku70 up-regulation. These findings suggest that Ku70 up-regulation provides the cell with a means of assuring either proper DNA repair or an appropriate response to DNA damage independent of DNA-PKcs activation.  相似文献   

8.
9.
The thiazolidinedione anti-diabetic drugs increase activation of endothelial nitric-oxide (NO) synthase by phosphorylation at Ser-1177 and increase NO bioavailability, yet the molecular mechanisms that underlie this remain poorly characterized. Several protein kinases, including AMP-activated protein kinase, have been demonstrated to phosphorylate endothelial NO synthase at Ser-1177. In the current study we determined the role of AMP-activated protein kinase in rosiglitazone-stimulated NO synthesis. Stimulation of human aortic endothelial cells with rosiglitazone resulted in the time- and dose-dependent stimulation of AMP-activated protein kinase activity and NO production with concomitant phosphorylation of endothelial NO synthase at Ser-1177. Rosiglitazone stimulated an increase in the ADP/ATP ratio in endothelial cells, and LKB1 was essential for rosiglitazone-stimulated AMPK activity in HeLa cells. Infection of endothelial cells with a virus encoding a dominant negative AMP-activated protein kinase mutant abrogated rosiglitazone-stimulated Ser-1177 phosphorylation and NO production. Furthermore, the stimulation of AMP-activated protein kinase and NO synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated receptor-gamma inhibitor GW9662. These studies demonstrate that rosiglitazone is able to acutely stimulate NO synthesis in cultured endothelial cells by an AMP-activated protein kinase-dependent mechanism, likely to be mediated by LKB1.  相似文献   

10.
Treatment of confluent monolayers of bovine aortic endothelial cells (BAEC) with gamma rays resulted in the delayed appearance of cells with an enlarged surface area that were morphologically similar to senescent cells. The majority of these cells stained positively for senescence-associated beta-galactosidase (SA-beta-gal), indicating that these cells are biochemically similar to senescent cells. The incidence of the senescence-like phenotype increased with dose (5-15 Gy) and time after irradiation. Cells with a senescence-like phenotype began to appear in the monolayer several days after irradiation. The onset of the appearance of this phenotype was accelerated by subculturing 24 h after irradiation. This acceleration was not entirely due to stimulation of progression through the cell cycle, since a high percentage of the senescent-like cells that appeared after subculture were not labeled with BrdUrd during the period after subculture. Prolonged up-regulation of expression of CDKN1A (also known as p21(CIP1/WAF1)) after irradiation was noted by Western blot analysis, again suggesting a similarity to natural senescence. Phenotypically altered endothelial cells were present in the irradiated monolayers as long as 20 weeks after irradiation, suggesting that a subpopulation of altered endothelial cells that might be functionally deficient could persist in the vasculature of irradiated tissue for a prolonged period after irradiation.  相似文献   

11.
Previous studies in this laboratory have demonstrated that the adhesion of T lymphocytes to endothelial cell (EC) monolayers in vitro can be increased by preincubation of the EC with interferon-gamma, interleukin 1 (IL-1), tumor necrosis factor-alpha (TNF), or lipopolysaccharide (LPS), or by stimulation of the T cells with phorbol esters. In this report, we have demonstrated that three subpopulations of human peripheral blood T cells can be identified on the basis of their abilities to bind to EC: (1) a strongly binding group which binds to unstimulated EC; (2) an intermediately binding subset which adheres to EC only if these cells have been stimulated with IL-1, TNF, or LPS; and (3) a weakly binding subpopulation which adheres poorly to either unstimulated or stimulated EC. The more adhesive subgroups had larger cellular volumes than the less adhesive cells, were relatively enriched in cells bearing the OKM1 surface marker, and expressed relatively greater amounts of the lymphocyte-function-associated-1 molecule. Stimulation of the EC to bind increased numbers of T cells by IL-1, TNF, and LPS appeared to be mediated by the expression of a common adhesion molecule on the EC.  相似文献   

12.
Radiation pneumonitis is a major complication of radiation therapy. However, the detailed cellular mechanisms have not been clearly defined. Based on the recognition that basement membrane disruption occurs in acute lung injury and that matrix metalloproteinase (MMP)-2 can degrade type IV collagen, one of the major components of the basement membrane, we hypothesized that ionizing radiation would modulate MMP-2 production in human lung epithelial cells. To evaluate this, the modulation of MMP-2 with irradiation was investigated in normal human bronchial epithelial cells as well as in A549 cells. We measured the activity of MMP-2 in the conditioned medium with zymography and the MMP-2 mRNA level with RT-PCR. Both of these cells constitutively expressed 72-kDa gelatinolytic activity, corresponding to MMP-2, and exposure to radiation increased this activity. Consistent with the data of zymography, ionizing radiation increased the level of MMP-2 mRNA. This radiation-induced increase in MMP-2 expression was mediated via p53 because the p53 antisense oligonucleotide abolished the increase in MMP-2 activity as well as the accumulation of p53 after irradiation in A549 cells. These results indicate that MMP-2 expression by human lung epithelial cells is involved in radiation-induced lung injury.  相似文献   

13.
The structure of centrioles in endothelial cells of embryonic (22-24 weeks old) and definitive (2, 14-17, and 30-40 years) human aorta in situ and also in aortic endothelial cells dividing in organ and cell cultures (donor age 30-40 years) was studied. It was found that in the endothelial cells from definitive aorta the lengths of mother centrioles vary from 0.5 to 2 microns, whereas the length of daughter centrioles remains constant (0.4-0.5 microns). The distal part of the cylinder of long mother centrioles consists of microtubule doublets. In aorta of donors 30-40 years old in multinucleated cells and in one of 30 single-nucleated cells analyzed, C-shaped long centrioles were seen. These centrioles exhibit a doublet organization along all their length. Mitotic cells in organ and cell culture had a nonequal structure of spindle poles: at one pole, the long mother centriole was seen, while at the other a mother centriole of standard size was found. In such cells of organ culture long centrioles make contact with the remnant of primary cilia until the end of anaphase. In cell culture mitotic cells are also observed containing C-shaped centrioles. In these cells the number of mother centrioles is odd and their number is not equal to the number of daughter centrioles. The possible mechanism for transformation of endothelial centrioles and its role in the control of cell-cycle progression are discussed.  相似文献   

14.
15.
L Ghisolfi  AC Keates  X Hu  DK Lee  CJ Li 《PloS one》2012,7(8):e43628
The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.  相似文献   

16.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

17.
Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement of DNA polymerase lambda in non-homologous end joining and base excision repair. In this study, we investigated whether DNA polymerase lambda played a significant role in determining ionizing radiation sensitivity. Despite increased sensitivity to hydrogen peroxide, lambda-deficient mouse embryonic fibroblasts displayed equal survival after exposure to ionizing radiation compared to their wild-type counterparts. In addition, we found increased sensitivity to the topoisomerase inhibitors camptothecin and etoposide in the absence of polymerase lambda. These results do not reveal a major role for DNA polymerase lambda in determining radiosensitivity in vivo.  相似文献   

18.
19.
Matsusaka S  Wakabayashi I 《FEBS letters》2005,579(30):6721-6725
The purpose of the present study was to investigate whether 5-hydroxytryptamine (5-HT, serotonin) affects migration of vascular endothelial cells. 5-HT significantly enhanced migration of human aortic endothelial cells (HAECs), and this enhancement was completely inhibited by GR 55562, a 5-HT1 receptor antagonist, and fluoxetine, a 5-HT transporter inhibitor, but was not affected by ketanserin, a 5-HT2 receptor antagonist. 5-HT stimulation increased RhoA and ERK activity of HAECs, and inhibitors of RhoA (Y-27632 and H-1152) and inhibitors of MEK (U0126 and PD98059) abolished the 5-HT-induced increase in migration velocity. Inhibition of Rho kinase by Y-27632 blocked stress fiber formation and rear release of HAECs. Thus, 5-HT has a potent enhancing action on migration of HAECs through activating the RhoA and ERK pathways following 5-HT1 receptor stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号