首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delimiting species is a crucial issue for many biological disciplines and is of primary importance for designing effective conservation plans. Traditional taxonomy based on morphological characters can be misled by the presence of phenotypic plesiomorphism or adaptative convergence. The use of multiple locus genetic data appears thus as a powerful tool for recognizing species boundaries. In this study, we used six nuclear introns and two mitochondrial markers to conduct a phylogenetic study of the Myotis nattereri species complex in the Western Palearctic. We combined tree-based and non-tree-based analyses, and also used concatenated phylogenetic methods of the separated nuclear and mitochondrial dataset as well as a recent coalescence-based multilocus approach. The strong concordance between the results of the analyses conducted confirms that M. nattereri is a paraphyletic group that is composed of four well-differentiated lineages in the study area. In the framework of the unified species concept, these four clades can be confidently considered as four valid species. This recognition of new cryptic species in the Western Mediterranean region shows that the biodiversity of this well-studied area is still not fully understood.  相似文献   

2.
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5'-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5'-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5'-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.  相似文献   

3.
Mating type genes are central to sexual reproduction and compatibility in Ascomycete fungi. However the "MAT" loci experience unique evolutionary pressures that can result in rapid divergence and enhanced inter-specific gene-flow (lateral gene transfer). In this study, molecular evolution of MAT loci was considered using the genus Fusarium (Teleomorph: Gibberella) as a model. Both MAT1-1 and MAT1-2 "idiomorphs" from eleven species of the Gibberellafujikuroi species complex were sequenced. Molecular evolution of the MAT loci from these heterothallic (self-sterile) species was compared with that of the MAT loci from nine homothallic (self-fertile) species in the Fusariumgraminearum species complex. Although Fusarium has previously been thought to have the same complement of four MAT genes that are found in Neurospora, we found evidence of a novel gene, MAT1-2-3, that may be specific to the Hypocreales. All MAT genes share a similar set of cis-regulatory motifs, although homothallic species might have recruited novel regulatory elements, which could potentially facilitate alternate expression of MAT1-1-1 and MAT1-2-1. FusariumMAT loci displayed evidence consistent with historical lateral gene-flow. Most notably, the MAT1-1 idiomorph of Fusariumsacchari appears to be unrelated to those of other species in the G.fujikuroi complex. In general, FusariumMAT genes are highly divergent. Both positive selection and relaxed selective constraint could account for this phenomenon. However, the extent of both recombination and inter-specific gene-flow in the MAT locus also appears to affect the rate of divergence.  相似文献   

4.
5.
Abasic (apurinic/apyrimidinic; AP) sites are generated in vivo through spontaneous base loss and by enzymatic removal of bases damaged by alkylating agents and reactive oxygen species. In Saccharomyces cerevisiae, the APN1 and APN2 genes function in alternate pathways of AP site removal. Apn2-like proteins have been identified in other eukaryotes including humans, and these proteins form a distinct subfamily within the exonuclease III (ExoIII)/Ape1/Apn2 family of proteins. Apn2 and other members of this subfamily contain a carboxyl-terminal extension not present in the ExoIII/Ape1-like proteins. Here, we purify the Apn2 protein from yeast and show that it is a class II AP endonuclease. Deletion of the carboxyl terminus does not affect the AP endonuclease activity of the protein, but this protein is defective in the removal of AP sites in vivo. The carboxyl terminus may enable Apn2 to complex with other proteins, and such a multiprotein assembly may be necessary for the efficient recognition and cleavage of AP sites in vivo.  相似文献   

6.
Colletotrichum species are defined primarily on the basis of host preference and morphology of the organism in planta and in culture. However the genus contains several species complexes that encompass such a broad range of morphological and pathological variation that the species name is of relatively little use either to the taxonomist or plant pathologist. Phylogenetic analyses, primarily based on variable regions of the ribosomal DNA (rDNA) sequences, have indicated that these species complexes comprise a variable number of identifiable monophyletic clades. However rDNA sequences often are insufficiently diverse to fully resolve such closely related lineages. A group of isolates representing three species complexes (C. graminicola, C. gloeosporioides and C. acutatum) were analyzed by using the high mobility group (HMG)-encoding sequence of the MAT1-2 mating type sequence, which has been shown in other fungi to be especially suitable for distinguishing relationships among closely related groups. Results were compared with those obtained from analysis of variable regions of the rDNA as well as from standard morphological classification methods. Results achieved through analysis of MAT1-2 sequences correlated well with those obtained by analysis of rDNA sequences but provided significantly better resolution among the various lineages. Morphological traits, including hyphopodia size, colony appearance, spore size, appresorial shape and size and host preference, frequently were unreliable as indicators of phylogenetic association. Spore shape and hyphopodia shape more often were useful for this purpose.  相似文献   

7.
Claviceps purpurea is an important pathogen of grasses and source of novel chemical compounds. Three groups within this species (G1, G2 and G3) have been recognized based on habitat association, sclerotia and conidia morphology, as well as alkaloid production. These groups have further been supported by Random Amplification of Polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers, suggesting this species may be more accurately described as a species complex. However, all divergent ecotypes can coexist in sympatric populations with no obvious physical barriers to prevent gene flow. In this study, we used both phylogenetic and population genetic analyses to test for speciation within C. purpurea using DNA sequences from ITS, a RAS-like locus, and a portion of beta-tubulin. The G1 types are significantly divergent from the G2/G3 types based on each of the three loci and the combined dataset, whereas the G2/G3 types are more integrated with one another. Although the G2 and G3 lineages have not diverged as much as the G1 lineage based on DNA sequence data, the use of three DNA loci does reliably separate the G2 and G3 lineages. However, the population genetic analyses strongly suggest little to no gene flow occurring between the different ecotypes, and we argue that this process is driven by adaptations to ecological habitats; G1 isolates are associated with terrestrial grasses, G2 isolates are found in wet and shady environments, and G3 isolates are found in salt marsh habitats.  相似文献   

8.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

9.
10.
Cryptic species are common in Diplodia, a genus that includes some well-known and economically important plant pathogens. Thus, species delimitation has been based on the phylogenetic species recognition approach using multigene genealogies. We assessed the potential of mating type (MAT) genes sequences as phylogenetic markers for species delimitation in the genus Diplodia. A PCR-based mating type diagnostic assay was developed that allowed amplification and sequencing of the MAT1-1-1 and MAT1-2-1 genes, and determination of the mating strategies used by different species. All species tested were shown to be heterothallic. Phylogenetic analyses were performed on both MAT genes and also, for comparative purposes, on concatenated sequences of the ribosomal internal transcribed spacer (ITS), translation elongation factor 1-alpha (tef1-α) and beta-tubulin (tub2). Individual phylogenies based on MAT genes clearly differentiated all species analysed and agree with the results obtained with the commonly used multilocus phylogenetic analysis approach. However, MAT genes genealogies were superior to multigene genealogies in resolving closely related cryptic species. The phylogenetic informativeness of each locus was evaluated revealing that MAT genes were the most informative loci followed by tef1-α. Hence, MAT genes can be successfully used to establish species boundaries in the genus Diplodia.  相似文献   

11.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

12.
Sexual reproduction in ascomycete fungi is governed by the mating-type (MAT) locus. The MAT loci of Diaporthe and its Phomopsis anamorphs differ in only one gene: MAT1-1-1 in mating-type MAT1-1 and MAT1-2-1 in mating-type MAT1-2. In order to diagnose mating-types in Diaporthe and Phomopsis and evaluate their usefulness in teleomorph induction in vitro and biological species delimitation, we designed primers that amplify part of the MAT1-1-1 and MAT1-2-1 genes. MAT phylogenies were generated and compared with ITS and EF1-α phylograms. Species recognised in the EF1-α phylogeny corresponded directly with those determined in the MAT phylogenies. ITS was shown to be highly variable resulting in a large number of phylogenetic species that were discordant with MAT and EF1-α species. Mating experiments were conducted to evaluate the existence of reproductive barriers between some isolates, and their anamorphic morphologies were compared. The primers proved to be useful in the mating-type diagnosis of isolates, selection of compatible mating pairs, and in the assessment of biological species boundaries.  相似文献   

13.
14.
Phylogenetic trees underlie our understanding of yeast evolution and are also proving instrumental in the development of a more robust yeast classification system based upon natural (i.e. evolutionary) relationships. In an effort to refine/improve taxonomic resolution, recent studies have focused on the use of multigene rather than single gene sequencing. Nevertheless, searches to determine 'the tree' remain problematic, as they can often overlook conflicts in the dataset. In such instances, phylogenetic networks such as neighbor-nets and consensus networks can provide a more useful and indeed more informative alternative means of analysis. In this study, we have used the latter two phylogenetic network techniques to reanalyze the multigene sequence dataset of Kurtzman & Robnett, which was used to redefine the taxonomy of the family Saccharomycetaceae. Results from our analyses show that, in general, established clades are robust. However, they also reveal conflict between mitochondrial- and nuclear-encoded genes and indicate the existence of complex patterns of hybridization and introgression not detected in the original study. These patterns are discussed in relation to how they may impact upon the current classification of this group of yeasts.  相似文献   

15.
Species limits were investigated within the Fusarium graminearum clade (Fg clade) through phylogenetic analyses of DNA sequences from portions of 11 nuclear genes including the mating-type (MAT) locus. Nine phylogenetically distinct species were resolved within the Fg clade, and they all possess contiguous MAT1-1 and MAT1-2 idiomorphs consistent with a homothallic reproductive mode. In contrast, only one of the two MAT idiomorphs was found in five other species, four of which were putatively asexual, and the other was heterothallic. Molecular evolutionary analyses indicate the MAT genes are under strong purifying selection and that they are functionally constrained, even in species for which a sexual state is unknown. The phylogeny supports a monophyletic and apomorphic origin of homothallism within this clade. Morphological analyses demonstrate that a combination of conidial characters could be used to differentiate three species and three species pairs. Species rank is formally proposed for the eight unnamed species within the Fg clade using fixed nucleotide characters.  相似文献   

16.
Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes.  相似文献   

17.
We analyzed the phylogeny of the Neotropical pitvipers within the Porthidium group (including intra-specific through inter-generic relationships) using 1.4 kb of DNA sequences from two mitochondrial protein-coding genes (ND4 and cyt-b). We investigated how Bayesian Markov chain Monte-Carlo (MCMC) phylogenetic hypotheses based on this 'mesoscale' dataset were affected by analysis under various complex models of nucleotide evolution that partition models across the dataset. We develop an approach, employing three statistics (Akaike weights, Bayes factors, and relative Bayes factors), for examining the performance of complex models in order to identify the best-fit model for data analysis. Our results suggest that: (1) model choice may have important practical effects on phylogenetic conclusions even for mesoscale datasets, (2) the use of a complex partitioned model did not produce widespread increases or decreases in nodal posterior probability support, and (3) most differences in resolution resulting from model choice were concentrated at deeper nodes. Our phylogenetic estimates of relationships among members of the Porthidium group (genera: Atropoides, Cerrophidion, and Porthidium) resolve the monophyly of the three genera. Bayesian MCMC results suggest that Cerrophidion and Porthidium form a clade that is the sister taxon to Atropoides. In addition to resolving the intra-specific relationships among a majority of Porthidium group taxa, our results highlight phylogeographic patterns across Middle and South America and suggest that each of the three genera may harbor undescribed species diversity.  相似文献   

18.
Assessing effects of gene tree error in coalescent analyses have widely ignored coalescent branch lengths (CBLs) despite their potential utility in estimating ancestral population demographics and detecting species tree anomaly zones. However, the ability of coalescent methods to obtain accurate estimates remains largely unexplored. Errors in gene trees should lead to underestimates of the true CBL, and for a given set of comparisons, longer CBLs should be more accurate. Here, we furthered our empirical understanding of how error in gene tree quality (i.e., locus informativeness and gene tree resolution) affect CBLs using four datasets comprised of ultraconserved elements (UCE) or exons for clades that exhibit wide ranges of branch lengths. For each dataset, we compared the impact of locus informativeness (assessed using number of parsimony-informative sites) and gene tree resolution on CBL estimates. Our results, in general, showed that CBLs were drastically shorter when estimates included low informative loci. Gene tree resolution also had an impact on UCE datasets, with polytomous gene trees producing longer branches than randomly resolved gene trees. However, resolution did not appear to affect CBL estimates from the more informative exon datasets. Thus, as expected, gene tree quality affects CBL estimates, though this can generally be minimized by using moderate filtering to select more informative loci and/or by allowing polytomies in gene trees. These approaches, as well as additional contributions to improve CBL estimation, should lead to CBLs that are useful for addressing evolutionary and biological questions.  相似文献   

19.
Several molecular techniques have been used to differentiate species or genetic lineages of microorganisms prior to sequencing. Among them, BOX‐ and ERIC‐PCRs may provide specific banding patterns for different species, allowing its differentiation. Therefore, the objective of this study was to evaluate these techniques as a tool for differentiation of phylogenetic lineages belonging to the Colletotrichum gloeosporioides species complex associated with cassava anthracnose disease. Sets of BOX‐ and ERIC‐PCR primers were used to assess the differentiation of lineages belonging to the complex with 81 C. gloeosporioides sensu lato (s.l.) isolates from different cassava producing regions. Some were identified by sequencing, such as Colletotrichum fructicola, Colletotrichum tropicale, C. gloeosporioides s.s, Colletotrichum theobromicola, Colletotrichum siamense, Colletotrichum brevisporum and Colletotrichum sichuanensis. The primers were able to amplify DNA fragments from all isolates. The ERIC‐PCR presented a wider range of banding patterns in comparison to BOX‐PCR, providing better differentiation of the individuals, as well as a higher correlation with the phylogenetic data was obtained by ERIC‐PCR and the combined data set for “BOX‐/ERIC‐PCRs,” inferred by Mantel test. However, the use of concatenated data (BOX‐/ERIC‐PCRs) reduced the discriminatory capacity presented by ERIC‐PCR alone, probably due to the lowest resolution of BOX‐PCR. Therefore, ERIC‐PCR technique enabled efficient differentiation of isolates belonging to the C. gloeosporioides complex and can be used to analyse multiple isolates in a collection and also being an important tool as a guide in the decision‐making process prior to sequencing. Based on this methodology, it was possible to identify two new species associated with cassava anthracnose disease, C. brevisporum and C. sichuanensis, being the first report of these two species associated with cassava anthracnose disease in Brazil.  相似文献   

20.
The root-rot fungus Heterobasidion annosum (Fr.) Bref. species complex consists of three intersterility groups (S, F, and P), separated by their host affinity. The phylogenetic relationship of the species complex was studied, with the focus on the S and F groups, by comparing DNA sequences of four nuclear gene fragments: calmodulin, glyceraldehyde 3-phosphate dehydrogenase, heat stress protein 80-1, and elongation factor 1-alpha, and one anonymous locus, from 29 fungal isolates originating from Europe, Asia, and North America. The phylogeny of each separate gene locus as well as the combined dataset consisted of three main clades: European F group isolates, Euroasian S group isolates, and North American S group isolates, suggesting them to be separated into phylogenetic species. The results also support the hypothesis of an early separation between the S and F groups, indicating that their distribution have followed their host tree species for a considerable time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号