首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ~75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.  相似文献   

2.
Dengue virus type 4 (DENV-4) was first reported in the Americas in 1981, where it caused epidemics of dengue fever throughout the region. In the same year, the region's first epidemic of dengue hemorrhagic fever was reported, caused by an Asian strain of dengue virus type 2 (DENV-2) that was distinct from the American subtype circulating previously. Despite the importance of these epidemics, little is known about the rates or determinants of viral spread among island and mainland populations or their directions of movement. We employed a Bayesian coalescent approach to investigate the transmission histories of DENV-2 and DENV-4 since their introduction in 1981 and a parsimony method to assess patterns of strain migration. For both viruses there was an initial invasion phase characterized by an exponential increase in the number of DENV lineages, after which levels of genetic diversity remained constant despite reported fluctuations in DENV-2 and DENV-4 activity. Strikingly, viral lineage numbers increased far more rapidly for DENV-4 than DENV-2, indicative of a more rapid rate of exponential population growth in DENV-4 or a higher rate of geographic dispersal, allowing this virus to move more effectively among localities. We propose that these contrasting dynamics may reflect underlying differences in patterns of host immunity. Despite continued gene flow along particular transmission routes, the overall extent of viral traffic was less than expected under panmixis. Hence, DENV in the Americas has a clear geographic structure that maintains viral diversity between outbreaks.  相似文献   

3.
To determine the extent and structure of genetic variation in dengue viruses (DENV) on a restricted spatial and temporal scale, we sequenced the E (envelope) genes of DENV-1, -2, and -3 isolates collected in 2001 from children enrolled in a prospective school-based study in Kamphaeng Phet, Thailand, and diagnosed with dengue disease. Our analysis revealed substantial viral genetic variation in both time and space, with multiple viral lineages circulating within individual schools, suggesting the frequent gene flow of DENV into this microenvironment. More-detailed analyses of DENV-2 samples revealed strong clustering of viral isolates within individual schools and evidence of more-frequent viral gene flow among schools closely related in space. Conversely, we observed little evolutionary change in those viral isolates sampled over multiple time points within individual schools, indicating a low rate of mutation fixation. These results suggest that frequent viral migration into Kamphaeng Phet, coupled with population (school) subdivision, shapes the genetic diversity of DENV on a local scale, more so than in situ evolution within school catchment areas.  相似文献   

4.
Dengue virus (DENV) populations are characteristically highly diverse. Regular lineage extinction and replacement is an important dynamic DENV feature, and most DENV lineage turnover events are associated with increased incidence of disease. The role of genetic diversity in DENV lineage extinctions is not understood. We investigated the nature and extent of genetic diversity in the envelope (E) gene of DENV serotype 1 representing different lineages histories. A region of the DENV genome spanning the E gene was amplified and sequenced by Roche/454 pyrosequencing. The pyrosequencing results identified distinct sub-populations (haplotypes) for each DENV-1 E gene. A phylogenetic tree was constructed with the consensus DENV-1 E gene nucleotide sequences, and the sequences of each constructed haplotype showed that the haplotypes segregated with the Sanger consensus sequence of the population from which they were drawn. Haplotypes determined through pyrosequencing identified a recombinant DENV genome that could not be identified through Sanger sequencing. Nucleotide level sequence diversities of DENV-1 populations determined from SNP analysis were very low, estimated from 0.009–0.01. There were also no stop codon, frameshift or non-frameshift mutations observed in the E genes of any lineage. No significant correlations between the accumulation of deleterious mutations or increasing genetic diversity and lineage extinction were observed (p>0.5). Although our hypothesis that accumulation of deleterious mutations over time led to the extinction and replacement of DENV lineages was ultimately not supported by the data, our data does highlight the significant technical issues that must be resolved in the way in which population diversity is measured for DENV and other viruses. The results provide an insight into the within-population genetic structure and diversity of DENV-1 populations.  相似文献   

5.
6.
Revealing the dispersal of dengue viruses (DENV) in time and space is central to understanding their epidemiology. However, the processes that shape DENV transmission patterns at the scale of local populations are not well understood, particularly the impact of such factors as human population movement and urbanization. Herein, we investigated trends in the spatial dynamics of DENV-2 transmission in the highly endemic setting of southern Viet Nam. Through a phylogeographic analysis of 168 full-length DENV-2 genome sequences obtained from hospitalized dengue cases from 10 provinces in southern Viet Nam, we reveal substantial genetic diversity in both urban and rural areas, with multiple lineages identified in individual provinces within a single season, and indicative of frequent viral migration among communities. Focusing on the recently introduced Asian I genotype, we observed particularly high rates of viral exchange between adjacent geographic areas, and between Ho Chi Minh City, the primary urban center of this region, and populations across southern Viet Nam. Within Ho Chi Minh City, patterns of DENV movement appear consistent with a gravity model of virus dispersal, with viruses traveling across a gradient of population density. Overall, our analysis suggests that Ho Chi Minh City may act as a source population for the dispersal of DENV across southern Viet Nam, and provides further evidence that urban areas of Southeast Asia play a primary role in DENV transmission. However, these data also indicate that more rural areas are also capable of maintaining virus populations and hence fueling DENV evolution over multiple seasons.  相似文献   

7.
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.  相似文献   

8.
The evolution of dengue virus (DENV) is characterized by phylogenetic trees that have a strong temporal structure punctuated by dramatic changes in clade frequency. To determine the cause of these large-scale phylogenetic patterns, we examined the evolutionary history of DENV serotype 1 (DENV-1) and DENV-3 in Thailand, where gene sequence and epidemiological data are relatively abundant over a 30-year period. We found evidence for the turnover of viral clades in both serotypes, most notably in DENV-1, where a major clade replacement event took place in genotype I during the mid-1990s. Further, when this clade replacement event was placed in the context of changes in serotype prevalence in Thailand, a striking pattern emerged; an increase in DENV-1 clade diversity was associated with an increase in the abundance of this serotype and a concomitant decrease in DENV-4 prevalence, while clade replacement was associated with a decline in DENV-1 prevalence and a rise of DENV-4. We postulate that intraserotypic genetic diversification proceeds at times of relative serotype abundance and that replacement events can result from differential susceptibility to cross-reactive immune responses.  相似文献   

9.
10.
Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases.  相似文献   

11.

Background  

Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G) interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1.  相似文献   

12.
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ(-/-) mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40(-/-) and IL-18(-/-) infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40(-/-) mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ(-/-) mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2(-/-) mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection.  相似文献   

13.
Revealing the patterns and determinants of the spread of dengue virus (DENV) at local scales is central to understanding the epidemiology and evolution of this major human pathogen. We performed a phylogenetic analysis of the envelope (E) genes of DENV-1, -2, -3, and -4 isolates (involving 97, 23, 5, and 74 newly collected sequences, respectively) sampled from school-based cohort and village-based cluster studies in Kamphaeng Phet, Thailand, between 2004 and 2007. With these data, we sought to describe the spatial and temporal patterns of DENV spread within a rural population where a future vaccine efficacy trial is planned. Our analysis revealed considerable genetic diversity within the study population, with multiple lineages within each serotype circulating for various lengths of time during the study period. These results suggest that DENV is frequently introduced into both semi-urban and rural areas in Kamphaeng Phet from other populations. In contrast, the persistence of viral lineages across sampling years was observed less frequently. Analysis of phylogenetic clustering indicated that DENV transmission was highly spatially and temporally focal, and that it occurred in homes rather than at school. Overall, the strength of temporal clustering suggests that seasonal bottlenecks in local DENV populations facilitate the invasion and establishment of viruses from outside of the study area, in turn reducing the extent of lineage persistence.  相似文献   

14.

Background  

Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections.  相似文献   

15.
A shift in dengue cases toward the adult population, accompanied by an increased risk of severe cases of dengue in the elderly, has created an important emerging issue in the past decade. To understand the level of past DENV infection among older adults after a large dengue outbreak occurred in southern Taiwan in 2015, we screened 1498 and 2603 serum samples from healthy residents aged ≥ 40 years in Kaohsiung City and Tainan City, respectively, to assess the seroprevalence of anti-DENV IgG in 2016. Seropositive samples were verified to exclude cross-reaction from Japanese encephalitis virus (JEV), using DENV/JEV-NS1 indirect IgG ELISA. We further identified viral serotypes and secondary DENV infections among positive samples in the two cities. The overall age-standardized seroprevalence of DENV-IgG among participants was 25.77% in Kaohsiung and 11.40% in Tainan, and the seroprevalence was significantly higher in older age groups of both cities. Although the percentages of secondary DENV infection in Kaohsiung and Tainan were very similar (43.09% and 44.76%, respectively), DENV-1 and DENV-2 spanned a wider age range in Kaohsiung, whereas DENV-2 was dominant in Tainan. As very few studies have obtained the serostatus of DENV infection in older adults and the elderly, this study highlights the need for further investigation into antibody status, as well as the safety and efficacy of dengue vaccination in these older populations.  相似文献   

16.
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.  相似文献   

17.
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.  相似文献   

18.
Dengue virus (DENV) may cause symptomatic infection with mild, undifferentiated febrile illness called classical dengue fever (DF) or a more severe disease, potentially fatal, known as dengue hemorrhagic fever (DHF) or dengue shock syndrome. The pathogenesis of DHF is based on the virulence of the infecting DENV and depends on the infecting serotypes and genotypes; it is also based on the immunopathogenesis that is mediated by host immune responses, including dengue virus-cross-reactive antibodies that augment the severity of infections. Involvement of central nervous system (CNS) is extensively described. The present study describes the virulence of DENV-3 isolates in a mouse model by intracranial (i.c.) inoculation with genotypes I and III. Our data suggest that, in this experimental model, DENV-3 genotype I may have the propensity to cause neurological disease in mice, whereas the genotype III is associated with asymptomatic infection in mice. Additionally, the symptomatic mice show a decrease of white blood cell count, infectious DENV in the brains and alterations in levels of IFN-gamma, IL-6 and MCP-1. The results confirm the mouse model as a way to study the biology of DENV-3 isolates and to improve the knowledge about the neurovirulence of the different genotypes of DENV.  相似文献   

19.

Background

High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections.

Methods and Principal Findings

We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level.

Conclusions and Significance

Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.  相似文献   

20.
Dengue virus transmission occurs in both epidemic and endemic cycles across tropical and sub-tropical regions of the world. Incidence is particularly high in much of Southeast Asia, where hyperendemic transmission plagues both urban and rural populations. However, endemicity has not been established in some areas with climates that may not support year-round viral transmission. An understanding of how dengue viruses (DENV) enter these environments and whether the viruses persist in inapparent local transmission cycles is central to understanding how dengue emerges in areas at the margins of endemic transmission. Dengue is highly endemic in tropical southern Vietnam, while increasingly large seasonal epidemics have occurred in northern Viet Nam over the last decade. We have investigated the spread of DENV-1 throughout Vietnam to determine the routes by which the virus enters northern and central regions of the country. Phylogeographic analysis of 1,765 envelope (E) gene sequences from Southeast Asia revealed frequent movement of DENV between neighboring human populations and strong local clustering of viral lineages. Long-distance migration of DENV between human population centers also occurred regularly and on short time-scales, indicating human-mediated viral invasion into northern Vietnam. Human populations in southern Vietnam were found to be the primary source of DENV circulating throughout the country, while central and northern Vietnam acted as sink populations, likely due to reduced connectedness to other populations in the case of the central regions and to the influence of temperature variability on DENV replication and vector survival and competence in the north. Finally, phylogeographic analyses suggested that viral movement follows a gravity model and indicates that population immunity and physical and economic connections between populations may play important roles in shaping patterns of DENV transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号