首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cilia are microtubule-based organelles that are present on the surfaces of almost all vertebrate cells. Most cilia function as sensory or molecular transport structures. Malfunctions of cilia have been implicated in several diseases of human development. The assembly of cilia is initiated by the centriole (or basal body), and several centrosomal proteins are involved in this process. The mammalian LIM protein Ajuba is a well-studied centrosomal protein that regulates cell division but its role in ciliogenesis is unknown. In this study, we isolated the medaka homolog of Ajuba and showed that Ajuba localizes to basal bodies of cilia in growth-arrested cells. Knockdown of Ajuba resulted in randomized left-right organ asymmetries and altered expression of early genes responsible for left-right body axis determination. At the cellular level, we found that Ajuba function was essential for ciliogenesis in the cells lining Kupffer’s vesicle; it is these cells that induce the asymmetric fluid flow required for left-right axis determination. Taken together, our findings identify a novel role for Ajuba in the regulation of vertebrate ciliogenesis and left-right axis determination.  相似文献   

3.
Generation of laterality depends on a pathway which involves the asymmetrically expressed genes nodal, Ebaf, Leftb, and Pitx2. In mouse, node monocilia are required upstream of the nodal cascade. In chick and frog, gap junctions are essential prior to node/organizer formation. It was hypothesized that differential activity of ion channels gives rise to unidirectional transfer through gap junctions, resulting in asymmetric gene expression. PKD2, which if mutated causes autosomal dominant polycystic kidney disease (ADPKD) in humans, encodes the calcium release channel polycystin-2. We have generated a knockout allele of Pkd2 in mouse. In addition to malformations described previously, homozygous mutant embryos showed right pulmonary isomerism, randomization of embryonic turning, heart looping, and abdominal situs. Leftb and nodal were not expressed in the left lateral plate mesoderm (LPM), and Ebaf was absent from floorplate. Pitx2 was bilaterally expressed in posterior LPM but absent anteriorly. Pkd2 was ubiquitously expressed at headfold and early somite stages, with higher levels in floorplate and notochord. The embryonic midline, however, was present, and normal levels of Foxa2 and shh were expressed, suggesting that polycystin-2 acts downstream or in parallel to shh and upstream of the nodal cascade.  相似文献   

4.
Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.  相似文献   

5.
Vertebrate left–right (LR) body axis is manifested as an asymmetrical alignment of the internal organs such as the heart and the gut. It has been proposed that the process of LR determination commonly involves a cilia-driven leftward flow in the mammalian node and its equivalents (Kupffer’s vesicle in zebrafish and the gastrocoel roof plate in Xenopus). Recently, it was reported that Ca2+ flux regulates Kupffer’s vesicle development and is required for LR determination. As a basis of Ca2+ flux in many cell types, inositol 1,4,5-trisphosphate (IP3) receptor-mediated calcium release from the endoplasmic reticulum (ER) plays important roles. However, its involvement in LR determination is poorly understood. We investigated the role of IP3 signaling in LR determination in Xenopus embryos. Microinjection of an IP3 receptor-function blocking antibody that can inhibit IP3 calcium channel activity randomized the LR axis in terms of left-sided Pitx2 expression and organ laterality. In addition, an IP3 sponge that could inhibit IP3 signaling by binding IP3 more strongly than the IP3 receptor impaired LR determination. Examination of the gastrocoel roof plate revealed that the number of cilia was significantly reduced by IP3 signal blocking. These results provide evidence that IP3 signaling is involved in LR asymmetry formation in vertebrates.  相似文献   

6.
7.
8.
Analysis of several mutations in the mouse is providing useful insights into the nature of the genes required for the establishment of the left-right axis during early development. Here we describe a new targeted allele of the mouse Tg737 gene, Tg737(Delta)2-3(beta)Gal), which causes defects in left-right asymmetry and other abnormalities during embryogenesis. The Tg737 gene was originally identified based on its association with the mouse Oak Ridge Polycystic Kidney (orpk) insertional mutation, which causes polycystic kidney disease and other defects. Complementation tests between the original orpk mutation and the new targeted knock-out mutation demonstrate that Tg737(Delta)2-3(beta)Gal) behaves as an allele of Tg737. The differences in the phenotype between the two mutations suggest that the orpk mutation is a hypomorphic allele of the Tg737 gene. Unlike the orpk allele, where all homozygotes survive to birth, embryos homozygous for the Tg737(Delta)2-3(beta)Gal) mutation arrest in development at mid-gestation and exhibit neural tube defects, enlargement of the pericardial sac and, most notably, left-right asymmetry defects. At mid-gestation the direction of heart looping is randomized, and at earlier stages in development lefty-2 and nodal, which are normally expressed asymmetrically, exhibit symmetrical expression in the mutant embryos. Additionally, we determined that the ventral node cells in mutant embryos fail to express the central cilium, which is a characteristic and potentially functional feature of these cells. The expression of both Shh and Hnf3(beta) is downregulated in the midline at E8.0, indicating that there are significant alterations in midline development in the Tg737(Delta)2-3(beta)Gal) homozygous embryos. We propose that the failure of ventral node cells to fully mature alters their ability to undergo differentiation as they migrate out of the node to contribute to the developing midline structures. Analysis of this new knockout allele allows us to define a critical role for the Tg737 gene during early embryogenesis. We have named the product of the Tg737 gene Polaris, which is based on the various polarity related defects associated with the different alleles of the Tg737 gene.  相似文献   

9.
BACKGROUND: Accurate chromosome segregation depends on the establishment of correct-amphitelic-kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. RESULTS: We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4(+), like that of pcs1(+), causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. CONCLUSIONS: We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.  相似文献   

10.
Ciliary defects lead to various diseases, such as primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD). We isolated a medaka mutant mii, which exhibits defects in the left-right (LR) polarity of organs, and found that mii encodes dynein axonemal intermediate chain 2a (dnai2a). Ortholog mutations were recently reported to cause PCD in humans. mii mutant embryos exhibited loss of nodal flow in Kupffer's Vesicle (KV), which is equivalent to the mammalian node, and abnormal expression of the left-specific gene. KV cilia in the mii mutant were defective in their outer dynein arms (ODAs), indicating that Dnai2a is required for ODA formation in KV cilia. While the mii mutant retained motility of the renal cilia and failed to show PKD, the loss of dnai2a and another dnai2 ortholog dnai2b led to PKD. These findings demonstrate that Dnai2 proteins control LR polarity and kidney formation through regulation of ciliary motility.  相似文献   

11.
Neurite growth is required for nervous system development and repair. Multiple signals, including neurotrophic factors and intact mechanosensing mechanisms, interact to regulate neurite growth. Degenerin/epithelial Na+ channel (DEG/ENaC) proteins have been identified as putative mechanosensors in sensory neurons. Recently, others have shown that the neurotrophic factor NGF stimulates expression of acid-sensing ion channel molecules, which are members of the DEG/ENaC family. However, it is unknown whether NGF regulates ENaC expression or whether ENaC expression is required for neurite formation. Therefore, the aims of the present study were to determine whether ENaC expression is 1) regulated by NGF and 2) required for NGF-induced neurite growth in pheochromocytoma PC-12 cells. We found NGF-induced expression of - and -subunits of ENaC, but not -ENaC. Tyrosine kinase A (TrkA) receptor blockade abolished NGF-induced - and -ENaC expression and neurite formation. NGF-induced neurite formation was inhibited by disruption of ENaC expression using 1) pharmacological blockade with benzamil, a specific ENaC inhibitor; 2) small interfering RNA; and 3) dominant-negative ENaC molecules. These data indicate NGF-TrkA regulation of ENaC expression may be required for neurite growth and may suggest a novel role for DEG/ENaC proteins in neuronal remodeling and differentiation. mechanosensation; degenerins; neurotrophins; tyrosine kinase A; pheochromocytoma cells  相似文献   

12.
Polarization of the one-cell C. elegans embryo establishes the animal's anterior-posterior (a-p) axis. We have identified reduction-of-function anaphase-promoting complex (APC) mutations that eliminate a-p polarity. We also demonstrate that the APC activator cdc20 is required for polarity. The APC excludes PAR-3 from the posterior cortex, allowing PAR-2 to accumulate there. The APC is also required for tight cortical association and posterior movement of the paternal pronucleus and its associated centrosome. Depletion of the protease separin, a downstream target of the APC, causes similar pronuclear and a-p polarity defects. We propose that the APC/separin pathway promotes close association of the centrosome with the cortex, which in turn excludes PAR-3 from the posterior pole early in a-p axis formation.  相似文献   

13.
Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.  相似文献   

14.
Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.  相似文献   

15.
In response to DNA damage, cells need robust repair mechanisms to complete the cell cycle successfully. Severe forms of DNA damage are repaired by homologous recombination (HR), in which the XRCC2 protein plays a vital role. Cells deficient in XRCC2 also show disruption of the centrosome, a key component of the mitotic apparatus. We find that this centrosome disruption is dynamic and when it occurs during mitosis it is linked directly to the onset of mitotic catastrophe in a significant fraction of the XRCC2-deficient cells. However, we also show for the first time that XRCC2 and other HR proteins, including the key recombinase RAD51, co-localize with the centrosome. Co-localization is maintained throughout the cell cycle, except when cells are finishing mitosis when RAD51 accumulates in the midbody between the separating cells. Taken together, these data suggest a tight functional linkage between the centrosome and HR proteins, potentially to coordinate the deployment of a DNA damage response at vulnerable phases of the cell cycle.  相似文献   

16.
To establish the vertebrate body plan, it is fundamental to create left-right asymmetry in the lateral-plate mesoderm to correctly position the organs. However, it is also crucial to maintain symmetry between the left and the right sides of the presomitic mesoderm, ensuring the allocation of symmetrical body structures, such as the axial skeleton and skeletal muscles. Here, we show that terra is an early left-sided expressed gene that links left-right patterning with bilateral synchronization of the segmentation clock.  相似文献   

17.
18.
《Epigenetics》2013,8(4):611-620
Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号