首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypertension is associated with increased production and circulation of vasoconstrictors, resulting in enhanced signalling through their cognate G protein-coupled receptors (GPCR). Prolonged vasoconstrictor GPCR signalling increases arterial contraction and stimulates signalling pathways that promote vascular smooth muscle cell (VSMC) proliferation, contributing to the development of atherosclerotic plaques, re-stenosis lesions and vascular remodelling. GPCR signalling through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) promotes VSMC proliferation. In VSMC, G protein-coupled receptor kinase 2 (GRK2) is known to regulate numerous vasoconstrictor GPCRs and their downstream signalling pathways. As GRK2 is implicated in controlling various aspects of cellular growth, we examined whether GRK2 could affect VSMC proliferation. Using two indices of cell growth, we show that PI3K inhibition and depletion of GRK2 expression produced a similar ablation of pro-proliferative vasoconstrictor-stimulated VSMC growth. Furthermore, GRK2-knockdown ablated the sustained phase of endothelin-1 and angiotensin-II-stimulated Akt phosphorylation, whilst the peak (5 min) phase was unaffected. Conversely, the GRK2 inhibitor compound 101 did not affect vasoconstrictor-driven Akt phosphorylation. Vasoconstrictor-stimulated phosphorylation of the Akt substrates GSK3α and GSK3β was ablated following RNAi-mediated GRK2 depletion, or after PI3K inhibition. Moreover, GRK2 knockdown prevented endothelin-1 and angiotensin-II from increasing cyclin D1 expression.These data suggest GRK2 expression is essential to facilitate vasoconstrictor-driven VSMC proliferation through its ability to promote efficient prolonged PI3K-Akt signalling, and thus relieve the GSK3-mediated block on cell cycling. Considering VSMC GRK2 expression increases early in the development of hypertension, this highlights the potential for GRK2 to promote VSMC growth and exacerbate hypertensive pathophysiological vascular remodelling.  相似文献   

2.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

3.
Salcedo A  Mayor F  Penela P 《The EMBO journal》2006,25(20):4752-4762
G-protein-coupled receptor kinase 2 (GRK2) is a central regulator of G-protein-coupled receptor signaling. We report that Mdm2, an E3-ubiquitin ligase involved in the control of cell growth and apoptosis, plays a key role in GRK2 degradation. Mdm2 and GRK2 association is enhanced by beta(2)-adrenergic receptor stimulation and beta-arrestin. Increased Mdm2 expression accelerates GRK2 proteolysis and promotes kinase ubiquitination at defined residues, whereas GRK2 turnover is markedly impaired in Mdm2-deficient cells. Moreover, we find that activation of the PI3K/Akt pathway by insulin-like growth factor-1 alters Mdm2-mediated GRK2 degradation, leading to enhanced GRK2 stability and increased kinase levels. These data put forward a novel mechanism for controlling GRK2 expression in physiological and pathological conditions.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

5.
Penela P  Elorza A  Sarnago S  Mayor F 《The EMBO journal》2001,20(18):5129-5138
G-protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of G-protein-coupled receptors (GPCRs). GRK2 expression is altered in several pathological conditions, but the molecular mechanisms that modulate GRK2 cellular levels are largely unknown. We recently have described that GRK2 is degraded rapidly by the proteasome pathway. This process is enhanced by GPCR stimulation and is severely impaired in a GRK2 mutant that lacks kinase activity (GRK2-K220R). In this report, we find that beta-arrestin function and Src-mediated phosphorylation of GRK2 are critically involved in GRK2 proteolysis. Overexpression of beta-arrestin triggers GRK2-K220R degradation based on its ability to recruit c-Src, since this effect is not observed with beta-arrestin mutants that display an impaired c-Src interaction. The presence of an inactive c-Src mutant or of tyrosine kinase inhibitors strongly inhibits co-transfected or endogenous GRK2 turnover, respectively, and a GRK2 mutant with impaired phosphorylation by c-Src shows a markedly retarded degradation. This pathway for the modulation of GRK2 protein stability puts forward a new feedback mechanism for regulating GRK2 levels and GPCR signaling.  相似文献   

6.
Thyrotropin-releasing hormone (TRH) and its receptor subtype TRH receptor-1 (TRHR1) are found in pancreatic beta-cells, and it has been shown that TRH might have potential for autocrine/paracrine regulation through the TRHR1 receptor. In this paper, TRHR1 is studied to find whether it can initiate multiple signal transduction pathways to activate the epidermal growth factor (EGF) receptor in pancreatic beta-cells. By initiating TRHR1 G protein-coupled receptor (GPCR) and dissociated alphabetagamma-complex, TRH (200 nM) activates tyrosine residues at Tyr845 (a known target for Src) and Tyr1068 in the EGF receptor complex of an immortalized mouse beta-cell line, betaTC-6. Through manipulating the activation of Src, PKC, and heparin-binding EGF-like growth factor (HB-EGF), with corresponding individual inhibitors and activators, multiple signal transduction pathways linking TRH to EGF receptors in betaTC-6 cell line have been revealed. The pathways include the activation of Src kinase and the release of HB-EGF as a consequence of matrix metalloproteinase (MMP)-3 activation. Alternatively, TRH inhibited PKC activity by reducing the EGF receptor serine/threonine phosphorylation, thereby enhancing tyrosine phosphorylation. TRH receptor activation of Src may have a central role in mediating the effects of TRH on the EGF receptor. The activation of the EGF receptor by TRH in multiple circumstances may have important implications for pancreatic beta-cell biology.  相似文献   

7.
G protein-coupled receptor kinase 2 (GRK2) plays a fundamental role in the regulation of G protein-coupled receptors (GPCRs), and changes in GRK2 expression levels can have an important impact on cell functions. GRK2 is known to be degraded by the proteasome pathway. We have shown previously that β-arrestins participate in enhanced kinase turnover upon GPCR stimulation by facilitating GRK2 phosphorylation by c-Src or by MAPK or by recruiting the Mdm2 E3 ubiquitin ligase to the receptor complex. In this report, we have investigated how such diverse β-arrestin scaffold functions are integrated to modulate GRK2 degradation. Interestingly, we found that in the absence of GPCR activation, β-arrestins do not perform an adaptor role for GRK2/Mdm2 association, but rather compete with GRK2 for direct Mdm2 binding to regulate basal kinase turnover. Upon agonist stimulation, β-arrestins-mediated phosphorylation of GRK2 at serine 670 by MAPK facilitates Mdm2-mediated GRK2 degradation, whereas c-Src-dependent phosphorylation would support the action of an undetermined β-arrestin-recruited ligase in the absence of GPCR activation. The ability of β-arrestins to play different scaffold functions would allow coordination of both Mdm2-dependent and -independent processes aimed at the specific modulation of GRK2 turnover in different signaling contexts.  相似文献   

8.
Barker BL  Benovic JL 《Biochemistry》2011,50(32):6933-6941
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.  相似文献   

9.
10.
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.  相似文献   

11.
In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one Gi-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.  相似文献   

12.
G蛋白偶联受体激酶(GRK)是G蛋白偶联受体(GPCR)信号通路的负性调节因子。近来的研究发现,GRK除了磷酸化G蛋白偶联受体使其脱敏外,还能与其他非受体底物结合,功能呈现多样性。GRK5是GRK家族成员之一,该研究探索了GRK5在细胞周期和有丝分裂中的作用,结果显示:在细胞内干扰GRK5的表达导致分裂中期的细胞数目增多和细胞凋亡。进一步的研究发现,干扰GRK5的表达导致有丝分裂中期的染色体不能正常排列到赤道板,而对分裂后期染色质分离以及胞质分裂没有影响。在细胞内干扰GRK蛋白家族的另一个成员GRK2对有丝分裂则没有明显影响。该研究提示GRK5是细胞有丝分裂的重要调控蛋白。  相似文献   

13.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

14.
The G protein-coupled receptor kinases (GRKs) are best known for their role in phosphorylating and desensitising G protein-coupled receptors (GPCRs). The GRKs also regulate signalling downstream of other families of receptors and have a number of non-receptor substrates and binding partners. Here we identify RhoAGTP and Raf1 as novel binding partners of GRK2 and report a previously unsuspected function for this kinase. GRK2 is a RhoA effector that serves as a RhoA-activated scaffold protein for the ERK MAP kinase cascade. The ability of GRK2 to bind to Raf1, MEK1 and ERK2 is dependent on RhoAGTP binding to the catalytic domain of the kinase. Exogenous GRK2 has previously been shown to increase ERK activation downstream of the epidermal growth factor receptor (EGFR). Here we find that GRK2-mediated ERK activation downstream of the EGFR is Rho-dependent and that treatment with EGF promotes RhoAGTP binding and ERK scaffolding by GRK2. Depletion of GRK2 expression by RNAi reveals that GRK2 is required for EGF-induced, Rho- and ERK-dependent thymidine incorporation in vascular smooth muscle cells (VSMCs). We therefore hypothesise that Rho-dependent ERK MAPK scaffolding by GRK2 downstream of the EGFR may have an important role in the vasculature, where increased levels of both GRK2 and RhoA have been associated with hypertension.  相似文献   

15.
Signaling from the activin/transforming growth factor beta (TGFbeta) family of cytokines is a tightly regulated process. Disregulation of TGFbeta signaling is often the underlying basis for various cancers, tumor metastasis, inflammatory and autoimmune diseases. In this study, we identify the protein G-coupled receptor kinase 2 (GRK2), a kinase involved in the desensitization of G protein-coupled receptors (GPCR), as a downstream target and regulator of the TGFbeta-signaling cascade. TGFbeta-induced expression of GRK2 acts in a negative feedback loop to control TGFbeta biological responses. Upon TGFbeta stimulation, GRK2 associates with the receptor-regulated Smads (R-Smads) through their MH1 and MH2 domains and phosphorylates their linker region. GRK2 phosphorylation of the R-Smads inhibits their carboxyl-terminal, activating phosphorylation by the type I receptor kinase, thus preventing nuclear translocation of the Smad complex, leading to the inhibition of TGFbeta-mediated target gene expression, cell growth inhibition and apoptosis. Furthermore, we demonstrate that GRK2 antagonizes TGFbeta-induced target gene expression and apoptosis ex vivo in primary hepatocytes, establishing a new role for GRK2 in modulating single-transmembrane serine/threonine kinase receptor-mediated signal transduction.  相似文献   

16.
In this study, we demonstrated that the specific inhibitors of the Na+/K+/Cl- cotransporter (NKCC1), bumetanide and furosemide, inhibited extracellular regulated kinase (ERK) phosphorylation in Balb/c 3T3 fibroblasts, stimulated with a variety of mitogens. In addition to fibroblast growth factor (FGF) shown before, the various mitogens tested in the present study (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), insulin, thrombin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)). Enter, the Ras/Raf/MEK/ERK cascade via different growth factors receptors and through one of the two main routes. The results of the present study provide evidence that have led us to conclude that the target protein which is controlled by the Na+/K+/Cl- cotransporter, is downstream of tyrosine kinase receptors, as well as of the G-protein-coupled receptor (GPCR). Several additional lines of evidence supported the above conclusion: (i) furosemide inhibits phosphorylation of MAPK kinase (MEK) induced by receptor tyrosine kinase (RTK) ligands, such as PDGF, FGF, and EGF. (ii) Furosemide also inhibited ERK phosphorylation, induced by thrombin, a GPCR. (iii) Furosemide inhibited MEK and ERK phosphorylation even when ERK phosphorylation was induced by direct activation of protein kinase C (PKC) by TPA, which bypasses early steps of the mitogenic cascade. In addition, we found that furosemide did not affect PKC phosphorylation induced directly by TPA. Taken together, the results of the present study indicate that the signal transduction protein, controlled by the Na+/K+/Cl- cotransporter, must be downstream of the PKC, and at/or upstream to MEK in the Ras/Raf/MEK/ERK cascade.  相似文献   

17.
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.  相似文献   

18.
19.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   

20.
Pathophysiological roles of G-protein-coupled receptor kinases   总被引:10,自引:0,他引:10  
G-protein-coupled receptor kinases (GRKs) interact with the agonist-activated form of G-protein-coupled receptors (GPCRs) to effect receptor phosphorylation and to initiate profound impairment of receptor signalling, or desensitization. GPCRs form the largest family of cell surface receptors known and defects in GRK function have the potential consequence to affect GPCR-stimulated biological responses in many pathological situations. This review focuses on the physiological role of GRKs revealed by genetically modified animals but also develops the involvement of GRKs in human diseases as, Oguchi disease, heart failure, hypertension or rhumatoid arthritis. Furthermore, the regulation of GRK levels in opiate addiction, cancers, psychiatric diseases, cystic fibrosis and cardiac diseases is discussed. Both transgenic mice and human pathologies have demonstrated the importance of GRKs in the signalling pathways of rhodopsin, beta-adrenergic and dopamine-1 receptors. The modulation of GRK activity in animal models of cardiac diseases can be effective to restore cardiac function in heart failure and opens a novel therapeutic strategy in diseases with GPCR dysregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号