首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

2.
3.
Summary We have constructed and characterized for the first time a complementary DNA (cDNA) clone, pHMC3, which codes for a cardiac myosin heavy chain mRNA from human heart. This clone contains a 1.7 kb DNA segment and specifies 543 amino acids of the carboxyl portion of the myosin heavy chain. The DNA sequence and encoded amino acid sequence were compared to the hamster alpha (pVHC1) and beta (pVHC2/pVHC3) cardiac myosin heavy chain cDNA and amino acid sequences and the rat cardiac myosin heavy chain sequences as well. The myosin heavy chain mRNAs are highly conserved and this is reflected in our cDNA clone. The pHMC3 clone is 87.9% homologous to the hamster alpha cDNA and 92.2% homologous to the hamster beta cDNA clones. The 3 untranslated region of pHMC3 is 64.1% homologous to the hamster beta clone while the hamster alpha myosin heavy chain shows only 25% homology to pHMC3 and exhibits extensive diversity. Similar results rere obtained when pHMC3 was compared to the rat cardiac myosin heavy chain cDNA sequences. The comparisons showed that pHMC3 is a beta cardiac myosin heavy chain cDNA clone.  相似文献   

4.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

5.
6.
We previously reported the characterization of a rabbit uterus cDNA clone (SMHC29) which encoded part of the light meromyosin of smooth muscle myosin heavy chain (Nagai, R., Larson, D.M., and Periasamy, M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1047-1051). We have now characterized a second cDNA clone (SMHC40) which also encodes part of the light meromyosin but differs from SMHC29 in the following respects. Nucleotide sequence analysis demonstrates that the two myosin heavy chain mRNAs are identical over 1424 nucleotides but differ in part of the 3'-carboxyl coding region and a portion of the 3'-nontranslated sequence. Specifically, SMHC40 cDNA encodes a unique stretch of 43 amino acids at the carboxyl terminus, whereas SMHC29 cDNA contains a shorter carboxyl terminus of 9 unique amino acids which is the result of a 39-nucleotide insertion. Recent peptide mapping of smooth muscle myosin heavy chain identified two isotypes with differences in the light meromyosin fragment that were designated as SM1 (204 kDa) and SM2 (200 kDa) type myosin (Eddinger, T. J., and Murphy, R.A. (1988) Biochemistry 27, 3807-3811). In this study we present direct evidence that SMHC40 and SMHC29 mRNA encode the two smooth muscle myosin heavy chain isoforms, SM1 and SM2, respectively, by immunoblot analysis using antibodies against specific carboxyl terminus sequences deduced from SMHC40 and SMHC29 cDNA clones.  相似文献   

7.
Two cardiac myosin heavy chain cDNA clones, pMHC alpha 252 and pMHC beta 174, were constructed using rabbit ventricular mRNA isolated from adult thyrotoxic and normal hearts, respectively. The complete DNA sequences of the 2.2- and 1.4-kilobase inserts of pMHC beta 174 and pMHC alpha 252, respectively, were obtained. The 736 amino acids specified by pMHC beta 174 begin 439 (1.3 kilobases) residues from the heavy chain NH2 terminus and include a 400-amino acid segment of subfragment 1 and the entire subfragment 2 region. Clone pMHC alpha 252 encodes 465 amino acids encompassing all of subfragment 2 and a portion of light meromyosin. Comparison of these two clones revealed extensive sequence overlap which included 1107 nucleotides specifying a 369-amino acid segment corresponding to subfragment 2. Within this region 78 (7%) base and 32 (8.7%) amino acid mismatches were noted. These differences were clustered within discrete regions, with the subfragment 1/subfragment 2 junctional region being particularly divergent. Structural differences between pMHC alpha 252 and pMHC beta 174 indicate that these two clones represent two similar but distinct myosin heavy chain genes whose expression is responsible for ventricular myosin heavy chain isoforms alpha and beta, respectively. The derived amino acid sequences of both clones exhibit extensive homology (greater than 81%) with sequences obtained by direct analysis of adult rabbit skeletal muscle myosin heavy chain protein. The sequences corresponding to the subfragment 2 region are consistent with an alpha-helical conformation with a characteristic 7-residue periodicity in the linear distribution of nonpolar amino acids. Conversely, subfragment 1 sequences specified by pMHC beta 174 suggest a folded highly irregular structure.  相似文献   

8.
We analyzed the multiplicity, heterogeneity, and organization of the genes encoding the alpha and beta tubulins in the sea urchin Lytechinus pictus by using cloned complementary deoxyribonucleic acid (cDNA) and genomic tubulin sequences. cDNA clones were constructed by using immature spermatogenic testis polyadenylic acid-containing ribonucleic acid as a template. alpha- and beta-tubulin clones were identified by hybrid selection and in vitro translation of the corresponding messenger ribonucleic acids, followed by immunoprecipitation and two-dimensional gel electrophoresis of the translation products. The alpha cDNA clone contains a sequence that encodes the 48 C-terminal amino acids of alpha tubulin and 104 base pairs of the 3' nontranslated portion of the messenger ribonucleic acid. The beta cDNA insertion contains the coding sequence for the 100-C terminal amino acids of beta tubulin and 83 pairs of the 3' noncoding sequence. Hybrid selections performed at different criteria demonstrated the presence of several heterogeneous, closely related tubulin messenger ribonucleic acids, suggesting the existence of heterogeneous alpha- and beta-tubulin genes. Hybridization analyses indicated that there are at least 9 to 13 sequences for each of the two tubulin gene families per haploid genome. Hybridization of the cDNA probes to both total genomic DNA and cloned germline DNA fragments gave no evidence for close physical linkage of alpha-tubulin genes with beta-tubulin genes at the DNA level. In contrast, these experiments indicated that some genes within the same family are clustered.  相似文献   

9.
10.
11.
12.
13.
Molecular cloning of rabbit gamma heavy chain mRNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
A cDNA library of rabbit spleen mRNA was screened for immunoglobulin heavy chain sequences. In this paper we report the nucleotide sequence of two cDNA clones containing part of the constant region of the rabbit gamma heavy chain mRNA. The sequence encodes part of the CH2 domain (amino acids 268 to 340), the entire CH3 domain (amino acids 341 to 447) and the 3' untranslated region. This nucleotide sequence has been compared to the corresponding sequences of mouse gamma 1, gamma 2a and gamma 2b genes. The homologies between rabbit gamma chain gene sequence and each of the mouse gamma chain gene sequences are of the same magnitude order. This comparison shows that the CH2 domains are more homologous to each other than CH3 domains or 3' untranslated sequences. The presence of species specific nucleotide positions suggests that mouse gamma chain genes could have evolved from a common ancestor shortly after the mouse-rabbit species separation. Genomic blot analysis of rabbit liver DNA with the rabbit C gamma probes shows a limited number of related sequences, with little restriction site polymorphism between individual rabbits.  相似文献   

14.
A human myosin heavy-chain gene, cloned in gamma Charon 4A phage (and as a clone designated lambda gMHC-1), was shown to code for a cardiac myosin heavy chain of the beta-type. The 5' end of the 14,200-base-pair genomic DNA clone is located in the head region of the myosin chain. The 3' end was shown to extent to the COOH terminus and includes the 3'-nontranslated sequence of the corresponding mRNA. The identification of lambda gMHC-1 as coding for a cardiac beta-myosin heavy chain was achieved by heteroduplex mapping using genomic cardiac myosin heavy-chain DNA of rabbit as a probe and, furthermore, by DNA sequence analysis of three selected subregions of the clones DNA including the 3'-nontranslated sequence. It was demonstrated by the S1 nuclease protection technique that the beta-myosin heavy-chain gene is transcribed in human heart muscle. In addition, we have found by the same technique that it is also expressed in human skeletal muscle.  相似文献   

15.
We have isolated a human cDNA which corresponds to a developmentally regulated sarcomeric myosin heavy chain. RNA hybridization and DNA sequence analysis indicate that this cDNA, called SMHCP, encodes a perinatal myosin heavy chain isoform. The nucleotide and deduced amino acid sequences of the 3.4-kb cDNA insert show strong homology with other sarcomeric myosin heavy chains. The strongest homology is to a previously described 970-bp cDNA encoding a rat perinatal isoform (Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. J. Biol. Chem. 259:13573-13578). The homology between the analogous human and rat perinatal myosin heavy chain cDNAs is maintained through the highly isoform-specific final 20 carboxyl-terminal amino acids, as well as the 3' untranslated region. Ribonuclease protection studies show that the mRNA encoding this isoform is expressed at high levels in 21-wk fetal skeletal tissue and not in fetal cardiac muscle. In contrast to the rat perinatal isoform, which was not found to be expressed in adult hind-leg tissue, the gene encoding SMHCP continues to be expressed in adult human skeletal tissue, but at lower levels relative to fetal skeletal tissue.  相似文献   

16.
A 3.6 kilobase cDNA clone coding for the human embryonic myosin heavy chain has been isolated and characterized from an expression library prepared from human fetal skeletal muscle. The derived amino acid sequence for the entire rod part of myosin shows 97% sequence homology between human and rat and a striking interspecies sequence conservation among the charged amino acid residues. The single copy gene is localized to human chromosome 17 and its expression in fetal skeletal muscle is developmentally regulated. The sequence information permits the design of isoform-specific probes for studies on the structure of the gene and its role in normal and defective human myogenesis.  相似文献   

17.
The analysis of a chicken myosin heavy chain cDNA clone   总被引:1,自引:0,他引:1  
A cDNA library has been constructed in the plasmid pBR322 using a large size class of RNA derived from chicken embryonic leg muscle as the template material. A clone containing a 2350-base pair insert was selected and identified as coding for the myosin heavy chain sequence, based upon its ability to hybridize to genomic myosin heavy chain clones, and by direct nucleotide sequencing. Cross-hybridization experiments with myosin heavy chain genomic clones, and mRNAs derived from different muscle types were used to explore the heterogeneity of the various myosin heavy chain isoforms at the level of the coding sequences. Although extensive sequence homology with the other isoforms was observed, a fast white isoform-specific subclone was constructed, and used to demonstrate that different genes code for the adult and embryonic fast white myosin heavy chain proteins.  相似文献   

18.
A mouse DNA clone containing the constant part of the immunoglobulin gamma 2b heavy chain was isolated from a mouse gene library. The library was constructed in Charon 4A from a partial EcoRI digest of mouse embryo DNA and was screened with a plasmid (p gamma (11)7) containing a cDNA insert of the heavy chain constant region of the plasmacytoma MPC-11 (1). The Charon 4A clone contains a 14 kb insert which is cleaved by EcoRI into a 6.8 kb and 7.2 kb fragments, of which only the 6.8 kb contains the sequence for gamma 2b heavy chain. Restriction analysis and partial sequence of the insert in p gamma (11) 7 enabled us to obtain three fragments corresponding to the 5' (amino acid 161-302) middle (amino acid 302-443) and 3' (mostly non coding 107 bp) regions of the constant region. Restriction analysis of the Charon 4A clone and hybridisation to these nick translated fragments revealed that the gamma 2b constant region gene contains about 1.5 kb and has three intervening sequences.  相似文献   

19.
In this study, myosin heavy chain from sea urchin pluteus larvae was characterized by analysis of a 2.5-kb cDNA clone. DNA sequence of 1465 bp demonstrated a 71% similarity in the deduced amino acid sequence to the embryonic rat skeletal muscle sequence. Antibodies generated against a polypeptide encoded by the open reading frame of the cDNA clone specifically identified a 210-kDa myosin protein which accumulated in 8-12 muscle cells differentiating bilateral to the esophagus beginning at early larval stages. This same myosin also accumulated in cells of the endodermal epithelium that comprise the three sphincters of the larval gut. Thus, a gene encoding myosin heavy chain is expressed in dissimilar cell types of the macromere lineage, and the pattern of accumulation in the gut identifies functionally distinct cells of the endodermal epithelium.  相似文献   

20.
The cDNA clones encoding the precursor form of glycinin A3B4 subunit have been identified from a library of soybean cotyledonary cDNA clones in the plasmid pBR322 by a combination of differential colony hybridizations, and then by immunoprecipitation of hybrid-selected translation product with A3-mono-specific antiserum. A recombinant plasmid, designated pGA3B41425, from one of six clones covering codons for the NH2-terminal region of the subunit was sequenced, and the amino acid sequence was inferred from the nucleotide sequence, which showed that the mRNA codes for a precursor protein of 516 amino acids. Analysis of this cDNA also showed that it contained 1786 nucleotides of mRNA sequence with a 5'-terminal nontranslated region of 46 nucleotides, a signal peptide region corresponding to 24 amino acids, an A3 acidic subunit region corresponding to 320 amino acids followed by a B4 basic subunit region corresponding to 172 amino acids, and a 3'-terminal nontranslated region of 192 nucleotides, which contained two characteristic AAUAAA sequences that ended 110 nucleotides and 26 nucleotides from a 3'-terminal poly(A) segment, respectively. Our results confirm that glycinin is synthesized as precursor polypeptides which undergo post-translational processing to form the nonrandom polypeptide pairs via disulfide bonds. The inferred amino acid sequence of the mature basic subunit, B4, was compared to that of the basic subunit of pea legumin, Leg Beta, which contained 185 amino acids. Using an alignment that permitted a maximum homology of amino acids, it was found that overall 42% of the amino acid positions are identical in both proteins. These results led us to conclude that both storage proteins have a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号