首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary R. meliloti primarily nodulates Medicago sativa but cannot nodulate Macroptilium atropurpureum. By introducing an 11.4 kb region into R. meliloti from the Symplasmid of Rhizobium strain MPIK3030, the host range of the R. meliloti transconjugants were shown to be extended to M. atropurpureum, one of the hosts of MPIK3030 but not normally nodulated by R. meliloti. The region responsible for host range extension was isolated by mass conjugating a clone bank from MPIK3030 into the R. meliloti wild type, and subsequent screening for nodulation on M. atropurpureum. Using deleted derivatives of a plasmid reisolated from endosymbiotic bacteria, the host range region was further narrowed down to three EcoRI fragments. Tn5 mutagenesis allowed the isolation of three discrete regions on an 11.4 kb section, which are involved in the extension of host range to M. atropurpureum. Finally, complementation experiments performed with R. meliloti common nod and hsn mutants indicated that none of the genes involved in the early steps of nodulation, including host-range functions, can be complemented by genes carried on the 11.4 kb fragment derived from MPIK3030.  相似文献   

2.
We have identified a nodD gene from the wide host-range Rhizobium strain MPIK3030 (termed nodD1) which is essential for nodulation on Macroptilium atropurpureum (siratro). Experiments with nodA–lacZ gene fusions demonstrate that the MPIK3030 nodD1 regulates expression of the nodABC genes. Additionally, we used nodC–lacZ fusions of Rhizobium meliloti to show that the MPIK3030 nodD1 gene induces expression of these fusions by interacting with plant factors from siratro and from the non-host Medicago sativa (alfalfa). The R. meliloti nodD genes, however, only interact with alfalfa exudate. In line with these results, no complementation of MPIK3030 nodD1 mutants could be obtained on siratro with the R. meliloti nodD genes, while the MPIK3030 nodD1 can complement nodD mutants of R. meliloti on alfalfa. Furthermore, R. meliloti transconjugants harbouring the MPIK3030 nodD1 efficiently nodulate the illegitimate host siratro. When compared with other nodD sequences, the amino acid sequence of the MPIK3030 nodD1 shows a conserved aminoterminus, whereas the carboxy-terminus of the putative gene product diverges considerably. Studies on a chimeric MPIK3030/R. meliloti nodD gene indicates that the carboxy-terminal region is responsible for the interaction with plant factor(s) and may have evolved in different rhizobia specifically to interact with plant–host factors.  相似文献   

3.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   

4.
Summary Different nodulation capacities were found among nine different varieties of alfalfa, cultivated in the Central region of Mexico, by Rhizobium meliloti 2011. A correlation between nodulation capacity and foliar dry weight was observed, which points to a genotype dependance on these parameters. A correlation between the nodulation capacity and the R. meliloti nod-gene inducing activity of the root exudates from the different varieties, as measured by -galactosidase induction in a test system consisting of a R. meliloti nodC-lacZ strain incubated with each root exudate, was established. When the root exudate from the best nodulating variety was added to the four poorest nodulating varieties, an increase in nodule formation was observed. We conclude that root exuded nod-gene inducing signals are a symbiotically-limiting component in natural populations of the poorest nodulating varieties of alfalfa.  相似文献   

5.
Summary We have shown by physical and genetic means that there are two megaplasmids in all strains of Rhizobium meliloti that we have studied. Megaplasmids from several strains of R. meliloti were mobilized to Agrobacterium tumefaciens and to other Rhizobium strains using the Tn5-Mob system. We were also able to resolve these two megaplasmids in agarose gels for most strains, and to show that only one of them hybridized to nif and nod genes. Transfer of this plasmid, the pSym, to Agrobacterium, R. leguminosarum, and R. trifolii strains conferred on these recipients the ability to nodulate alfalfa ineffectively. The second megaplasmid did not appear to have a direct role in nodule initiation. However, we were able to complement extracellular polysaccharide (EPS-) mutants of R. meliloti by transferring this second megaplasmid into them. Furthermore, Tn5-induced EPS- mutants of R. meliloti 2011, which produced ineffective (Fix-) nodules of abnormal morphology, were shown by hybridization and complementation to carry mutations in this second megaplasmid. This demonstrates that both megaplasmids of R. meliloti are necessary for the effective nodulation of alfalfa.  相似文献   

6.
The nodulation regulon of Rhizobium meliloti AK631 includes several operons (nodABC, hsnABC, hsnD, efn locus) which have in common a consensus promoter sequence called the nod box. A synthetic nod box probe was used to identify two additional nod boxes, n4 and n5, which were subcloned for study. By constructing lac fusions, we show that n4 and n5 sponsor induction of downstream regions as previously shown for n1-nodABC and n2-hsnABC. Using site-directed Tn5 mutagenesis, we find that the n5 locus plays a significant role in nodulation of alfalfa and sweetclover, whereas the n4 locus is important for alfalfa, but not for sweetclover. Hybridization data suggest that the n5 locus is conserved among Rhizobium species. In contrast, the n4 locus seems to be unique to Rhizobium meliloti strains, in agreement with the host-specific phenotype of n4 locus mutants. Thus, the use of a promoter probe allows us to identify nodulation genes which may be overlooked by standard methods such as random Tn5 mutagenesis.  相似文献   

7.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

8.
Specificity in legume-Rhizobium symbiosis depends on plant and rhizobial genes. As our objective was to study broad host-range determinants of rhizobia, we sought a legume and a Rhizobium with the lowest possible specificity. By inoculating 12 different legumes with a heterogenous collection of 35 fast-growing rhizobia, we found Rhizobium sp. NGR234 to be the Rhizobium and Vigna unguiculata to be the plant with the lowest specificities. Transfer of cloned fragments of the Sym-plasmid pNGR234a into heterologous rhizobia, screening for extension of host-range of the transconjugants to include V. unguiculata, and restriction mapping of the Hsn- and overlapping clones, proved that there were at least three distinct Hsn-regions (HsnI, II, and III) on pNGR234a. HsnI is located next to nodD, HsnII is linked to nifKDH and HsnIII to nodC. In addition to nodulation of Vigna, HsnI conferred upon the transconjugants the ability to nodulate Glycine max, Macroptilium atropurpureum and Psophocarpus tetragonolobus. All three Hsn-regions, when transferred to the appropriate recipients, induced root-hair-curling on M. atropurpureum. Hsn-region III was able to complement a mutation in the host-range gene nodH of R. meliloti strain 2011. Homology to nod-box-sequences could be shown only for the sub-clones containing HsnII and HsnIII, thus suggesting different regulation mechanisms for HsnI and HsnII/III.  相似文献   

9.
Swanson JA  Tu JK  Ogawa J  Sanga R  Fisher RF  Long SR 《Genetics》1987,117(2):181-189
Rhizobium meliloti Nod- mutant WL131, a derivative of wild-type strain 102F51, was complemented by a clone bank of wild-type R. meliloti 1021 DNA, and clone pRmJT5 was recovered. Transfer of pRmJT5 conferred alfalfa nodulation on other Rhizobium species, indicating a role in host range determination for pRmJT5. Mutagenesis of pRmJT5 revealed several segments in which transposon insertion causes delay in nodulation, and/or marked reduction of the number of nodules formed on host alfalfa plants. The set of mutants indicated five regions in which nod genes are located; one mutant, nod-216, is located in a region not previously reported to encode a nodulation gene. Other mutant phenotypes correlated with the positions of open reading frames for nodH, nodF and nodE , and with a 2.2-kb EcoRI fragment. A mutant in nodG had no altered phenotype in this strain. One nodulation mutant was shown to be a large deletion of the common nod gene region. We present a discussion comparing the various studies made on this extended nod gene region.  相似文献   

10.
Summary The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH 4 + ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.  相似文献   

11.
Summary Cosmids containing a nodulation gene from Rhizobium loti NZP2037 were isolated using a 12.8 kb nod:: Tn5 EcoRI fragment from the Nod- mutant strain PN233, as a hybridisation probe. A physical map of the nod region was established using the enzymes EcoRI and HindIII and the site of insertion of Tn5 in PN233 determined. Site-specific exchange of the cloned nod:: Tn5 fragment demonstrated that Tn5, and not an indigenous insertion sequence, was responsible for the nod mutation in PN233. The nod cosmids isolated complemented the Nod- phenotype of strain PN233 but restoration of the Fix phenotype was variable suggesting a need for marker rescue to occur before nitrogen fixation occurred.Corresponding nod cosmids were isolated from a R. loti strain, NZP2213, that forms ineffective tumour-like structures on Lotus pedunculatus and from the slow-growing strain (Bradyrhizobium sp), CC814s, by in planta complementation of PN233. Hybridisation experiments suggested that the nod gene region of R. loti NZP2037 was more homologous to Bradyrhizobium strain CC814s than with a nod gene region of R. trifolii strain PN100. However, transfer of the R. trifolii nod cosmid into the R. loti Nod mutant PN233, restored the ability of this strain to initiate nodules on Lotus pedunculatus.  相似文献   

12.
Two divergent reports have been published on the genetic complementation of rhizobial nod mutants using Frankia DNA. In 1991 putative Frankia cosmid library clones were reported to restore normal nodulation properties to Rhizobium leguminosarum biovar viciaenodD::Tn5, but no supporting sequence data were published. In 1992 a second group reported a failure to find any evidence of functional complementation of various rhizobial nod mutants by Frankia DNA (nodA, nodB and nodC). Complementation tests of nine Nod R. leguminosarum bv. viciae or Sinorhizobium meliloti Tn5 mutants (nodA , nodB , nodC , nodD , nodF  , nodL , nodH ) were thus performed using a Frankia gene library in pLAFR3 to clarify this situation. Rhizobial transconjugants obtained by tri-parental matings were screened for restoration of the nodulation phenotype on their host plants, Vicia sativa subsp. nigra or Medicago sativa. Nodulation was observed on plants inoculated with transconjugants of the R. leguminosarum bv. viciaenodC::Tn5 mutant. The Nod+ rhizobial transconjugants were isolated and analysed. The Nod+ phenotype of these transconjugants was found to be due to Tn5 excision/transposition. No functional complementation was found with any of the mutants used, suggesting that rhizobial complementation of nod mutants with Frankia DNA is unlikely to occur. Received: 17 April 1998 / Accepted: 22 July 1998  相似文献   

13.
Summary By insertional and deletional marker replacement mutagenesis the common nod region of Bradyrhizobium japonicum was examined for the presence of additional, essential nodulation genes. An open reading frame located in the 800 bp large intergenic region between nodD1 and nodA did not appear to be essential for nodulation of soybean. Furthermore, a strain with a deletion of the nodI- and nodJ-like genes downstream of nodC had a Nod+ phenotype. A mutant with a 1.7 kb deletion immediately downstream of nodD1 considerably delayed the onset of nodulation. This region carried a second copy of nodD (nodD2). A nodD1-nodD2 double mutant had a similar phenotype to the nodD2 mutant. Using a 22-mer oligonucleotide probe partially identical to the nod box sequence, a total of six hybridizing regions were identified in B. japonicum genomic DNA and isolated from a cosmid library. Sequencing of the hybridizing regions revealed that at least three of them represented true nod box sequences whereas the others showed considerable deviations from the consensus sequence. One of the three nod box sequences was the one known to be associated with nodA, whereas the other two were located 60 to 70 kb away from nif cluster I. A deletion of one of these two sequences plus adjacent DNA material mmutant 308) led to a reduced nodulation on Vigna radiata but not on soybean. Thus, this region is probably involved in the determination of host specificity.Dedicated to Prof. Giorgio Semenza on the occasion of his 60th birthday  相似文献   

14.
Two divergent reports have been published on the genetic complementation of rhizobial nod mutants using Frankia DNA. In 1991 putative Frankia cosmid library clones were reported to restore normal nodulation properties to Rhizobium leguminosarum biovar viciaenodD::Tn5, but no supporting sequence data were published. In 1992 a second group reported a failure to find any evidence of functional complementation of various rhizobial nod mutants by Frankia DNA (nodA, nodB and nodC). Complementation tests of nine Nod? R. leguminosarum bv. viciae or Sinorhizobium meliloti Tn5 mutants (nodA ? , nodB ? , nodC ? , nodD ? , nodF? ? , nodL ? , nodH ? ) were thus performed using a Frankia gene library in pLAFR3 to clarify this situation. Rhizobial transconjugants obtained by tri-parental matings were screened for restoration of the nodulation phenotype on their host plants, Vicia sativa subsp. nigra or Medicago sativa. Nodulation was observed on plants inoculated with transconjugants of the R. leguminosarum bv. viciaenodC::Tn5 mutant. The Nod+ rhizobial transconjugants were isolated and analysed. The Nod+ phenotype of these transconjugants was found to be due to Tn5 excision/transposition. No functional complementation was found with any of the mutants used, suggesting that rhizobial complementation of nod mutants with Frankia DNA is unlikely to occur.  相似文献   

15.
Summary Rhizobium nodulation genes can produce active extracellular signals for legume nodulation. The R. meliloti host-range nodH gene has been postulated to mediate the transfer of a sulfate to a modified lipo-oligosaccharide, which in its sulfated form is a specific nodulation factor for alfalfa (Medicago sativa L.). We found that alfalfa was capable of effective nodulation with signal-defective and non-nodulating nodH mutants (Nnr) defining a novel gene-for-gene interaction that conditions nodulation. Bacteria-free nodules that formed spontaneously at about a 3–5% rate in unselected seed populations of alfalfa cv Vernal in the total absence of Rhizobium (Nar) exhibited all the histological, regulatory and ontogenetic characteristics of alfalfa nodules. Inoculation of such populations with nodH mutants, but not with nodA or nodC mutants, produced a four- to five-fold increase in the percentage of nodulated plants. Some 10–25% of these nodulated plants formed normal pink nitrogen-fixing nodules instead of white empty nodules. About 70% of the S1 progeny of such Nnr+ plants retained the parental phenotype; these plants were also able to form nodules in the absence of Rhizobium. If selected Nar+ plants were self-pollinated almost the entire progeny exhibited the parental Nar+ phenotype. Segregation analysis of S1 and S2 progeny from selected Nar+ plants suggests that the Nar character is monogenic dominant and that the nodulation phenotype is controlled by a gene dose effect. The inoculation of different S1 Nar+ progeny with nodH mutant bacteria gave only empty non-fixing nodules. Our results indicate that certain alfalfa genotypes can be selected for suppression of the non-nodulation phenotype of nodH mutants. The fact that the Nnr plant phenotype behaved as a dominant genetic trait and that it directly correlated with the ability of the selected plants to form nodules in the absence of Rhizobium suggests that the interaction of plant and bacterial alleles occurs early during signal transduction through the alteration of a signal reception component of the plant so that it responds to putative signal precursors.Abbreviations Nara Nodulation in the absence of Rhizobium - Nara nodulation with non-nodulating Rhizobium  相似文献   

16.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

17.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

18.
We have used spot-inoculation and new cytological procedures to observe the earliest events stimulated in alfalfa (Medicago sativa L.) roots by Rhizobium meliloti. Roots were inoculated with 1–10 nl of concentrated bacteria, fixed in paraformaldehyde, and after embedding and sectioning stained with a combination of acridine orange and DAPI (4-6-diamidino-2-phenylindole hydrochloride). Normal R. meliloti provoke cell dedifferentiation and mitosis in the inner cortex of the root within 21–24 h after inoculation. This activation of root cells spreads progressively, leading to nodule formation. In contrast, the R. meliloti nodA and nodC mutants do not stimulate any activation or mitosis. Thus the primary and earliest effect of Rhizobium nod gene action is plant cellular activation. A rapid, whole-mount visualization by lactic acid shows that the pattern of nodule form varies widely. Some R. meliloti strains were found to be capable of stimulating on alfalfa roots both normal nodules and a hybrid structure intermediate between a nodule and a lateral root.  相似文献   

19.
Summary Transposon Tn7 was shown to insert specifically into the megaplasmid of different Rhizobium meliloti strains. Tn7 transposition could not be detected in other Rhizobium strains such as R. trifolii, R. leguminosarum, R. phaseoli and R. japonicum. In R. meliloti strains, two unique sites in the megaplasmid were observed into which Tn7 can transpose at different frequencies. Only one copy of Tn7 could be detected in the megaplasmid and the insertion sites for Tn7 are outside the nif and nod region. Tn7 transposition in R. meliloti showed a marked preference for sites on plasmid RP4 compared to the megaplasmid sites. Attempts to cure Tn7 from the megaplasmid were unsuccessful. This site specific transposition of Tn7 in R. meliloti provides an additional genetic tool to further manipulate this important plasmid in symbiotic nitrogen fixation.  相似文献   

20.
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号