首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradative processing of internalized insulin in isolated adipocytes   总被引:9,自引:0,他引:9  
Based on the distribution of 125I-insulin between the cell surface and the cell interior, it was found that insulin rapidly binds (t 1/2 = 0.4 min) to surface receptors at 37 degrees C, and after an initial lag period of about 1 min, accumulates intracellularly until steady state is reached (t 1/2 = 3.5 min). At this time about 40% of the total cell-associated 125I-insulin resides in the cell interior reflecting a dynamic equilibrium between the rate of insulin endocytosis and the rate at which internalized insulin is processed and extruded from cells. Since this percentage decreased to 15% at 16 degrees C, it appears that internalization is more temperative-sensitive than the intracellular processing of insulin. When 125I-insulin was preloaded into the cell interior, it was found that internalized insulin was rapidly released to the medium at 37 degrees C (t 1/2 = 6.5 min) and consisted of both degraded products and intact insulin (as assessed by trichloroacetic acid precipitability and column chromatography). Since 75% of internalized insulin was ultimately degraded, and 25% was released intact, this indicates that degradation is the predominant pathway. To determine when incoming insulin enters a degradative compartment, cells were continually exposed to 125I-insulin and the composition of insulin in the cell interior over time was assessed. After 2 min all endocytosed insulin was intact, between 2-3 min degradation products began accumulating intracellularly, and by 15 min equilibrium was reached with 20% of internalized insulin consisting of degraded products. Degraded insulin was then released from the cell interior within 4-5 min after endocytotic uptake, since this was the earliest time chloroquine was found to inhibit the release of degradation products. Moreover, the final release of degraded insulin was not inhibitable by the energy depleter dinitrophenol. Thus, within the degradative pathway, insulin enters lysosomes by 2.5-3 min and is released to the medium by simple diffusion after an additional 1.5-2 min.  相似文献   

2.
Adipocytes route internalized insulin through two major pathways, a degradative pathway and a retroendocytotic pathway. To examine whether sorting of incoming insulin-receptor complexes can be altered, we assessed the effect of vanadate on the intracellular processing of both insulin and insulin receptors. After cells were pretreated with vanadate (1 mM for 30 min at 37 degrees C), 125I-insulin was loaded into the cell interior. When the net efflux of insulin from cells into the medium was then monitored, vanadate was found to slow the efflux of insulin from a t1/2 of 6.2 min (controls) to 11 min. Since efflux reflects both the rapid extrusion of intact insulin and the slower release of degradative products, we proposed that vanadate diverts more insulin into the degradative pathway. Further evidence in support of this idea included the following: 1) when intracellular degradation of insulin was impaired by chloroquine, undegraded insulin accumulated faster within vanadate-treated cells, consistent with greater flux through a degradative pathway; 2) vanadate increased the percentage of degraded insulin released from cells from 61 and 72%; and 3) under steady-state binding conditions, more insulin resided in the cell interior of vanadate-treated cells (44.8% versus 34.5%), and the time required for the intracellular pool to reach equilibrium was prolonged (t1/2 of 5.5 min versus 4.0). Neither insulin internalization nor degradation was impaired by vanadate alone. In related studies Tris was found to inhibit insulin-mediated receptor recycling by only 10%, whereas in the presence of vanadate (plus Tris) almost all incoming insulin receptors were prevented from recycling. Vanadate alone had no effect on the ability of insulin receptors to recycle. Based on these results we conclude that: 1) vanadate shunts incoming insulin from a more rapid retroendocytotic pathway to a slower degradative pathway and diverts insulin receptors from a Tris-insensitive recycling pathway to one that can be completely inhibited by Tris; 2) these effects are selective, in that vanadate impairs neither insulin degradation nor receptor uptake and recycling. Considered together, these findings support the idea that a sorting mechanism exists for the intracellular routing of incoming insulin-receptor complexes.  相似文献   

3.
Selective degradation of insulin within rat liver endosomes   总被引:4,自引:2,他引:2       下载免费PDF全文
To characterize the role of the endosome in the degradation of insulin in liver, we employed a cell-free system in which the degradation of internalized 125I-insulin within isolated intact endosomes was evaluated. Incubation of endosomes containing internalized 125I-insulin in the cell-free system resulted in a rapid generation of TCA soluble radiolabeled products (t1/2, 6 min). Sephadex G-50 chromatography of radioactivity extracted from endosomes during the incubation showed a time dependent increase in material eluting as radioiodotyrosine. The apparent Vmax of the insulin degrading activity was 4 ng insulin degraded.min-1.mg cell fraction protein-1 and the apparent Km was 60 ng insulin.mg cell fraction protein-1. The endosomal protease(s) was insulin-specific since neither internalized 125I-epidermal growth factor (EGF) nor 125I-prolactin was degraded within isolated endosomes as assessed by TCA precipitation and Sephadex G-50 chromatography. Significant inhibition of degradation was observed after inclusion of p-chloromercuribenzoic acid (PCMB), 1,10-phenanthroline, bacitracin, or 0.1% Triton X-100 into the system. Maximal insulin degradation required the addition of ATP to the cell-free system that resulted in acidification as measured by acridine orange accumulation. Endosomal insulin degradation was inhibited markedly in the presence of pH dissipating agents such as nigericin, monensin, and chloroquine or the proton translocase inhibitors N-ethylmaleimide (NEM) and dicyclohexylcarbodiimide (DCCD). Polyethylene glycol (PEG) precipitation of insulin-receptor complexes revealed that endosomal degradation augmented the dissociation of insulin from its receptor and that dissociated insulin was serving as substrate to the endosomal protease(s). The results suggest that as insulin is internalized it rapidly but incompletely dissociates from its receptor. Dissociated insulin is then degraded by an insulin specific protease(s) leading to further dissociation and degradation.  相似文献   

4.
The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblast insulin receptors. These cells bind and internalize insulin normally. Biochemical assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 degrees C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 degrees C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The total number of complexes reached a maximum by 5 min and decreased rapidly thereafter with a t 1/2 of approximately 10 min. There was a distinct delay in the appearance, rate of rise, and peak of intracellular free and degraded insulin. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored, based on the ability of dissociated insulin to rebind to receptor upon neutralization of acidic intracellular vesicles with monensin. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.  相似文献   

5.
The kinetics of receptor internalization and recycling was directly determined in adipocytes by measuring 125I-insulin binding to total, intracellular, and cell-surface insulin receptors. In the absence of insulin 90% of all receptors were on the cell-surface and 10% were intracellular. Insulin (100 ng/ml) rapidly altered this distribution by translocating surface receptors to the cell-interior through a temperature and energy dependent process. Surface-derived receptors were seen within cells as early as 30 s and accumulated intracellularly at the rate of approximately 20,000/min (t 1/2 = 2.7 min). After 6 min the size of the intracellular receptor pool plateaued (for up to 2 h), with 30% of surface receptors residing within the cell. This plateau was due to the attainment of an equilibrium between receptor uptake and recycling, since removal of insulin (to stop receptor uptake) was followed by both a rapid depletion of intracellular receptors and a a concomitant and stoichiometric reappearance of receptors on the cell-surface. Receptors were efficiently recycled, with little or no net loss observed even after 4 h of insulin treatment; however, recycling could be partially inhibited (approximately 10%) by several agents (e.g. chloroquine and Tris). Tris treatment of adipocytes in the presence of insulin led to 50% loss of surface and total receptors at 2 and 4 h, respectively. Since chloroquine prevented the decrease in total receptors, but not the loss of surface receptors, it appears that Tris impairs recycling by diverting a portion of incoming receptors to a chloroquine-inhibitable degradative site. From these results we conclude that: 1) insulin triggers endocytotic uptake of insulin-receptor complexes; 2) internalized receptors are then rapidly reinserted into the plasma membrane, and the receptors can traverse this recycling pathway within 6 min; 3) prolonged recycling does not normally result in measurable receptor loss, but when receptors are prevented from recycling, they become trapped intracellularly and are shunted to a chloroquine-sensitive degradative pathway; and 4) chloroquine and Tris are only partially effective inhibitors of receptor recycling.  相似文献   

6.
A key step in the sorting of endocytosed ligands from their receptors is dissociation, which is triggered by the acidic pH of endosomes. To determine whether dissociation occurs synchronously for all ligands, we compared in Chinese hamster ovary cells the intracellular dissociation of insulin, which dissociates between pH 6.3 and 7.0, with that of lysosomal hydrolases bearing the mannose 6-phosphate recognition marker (Man-6-P proteins), which dissociate around pH 5.8. Chinese hamster ovary cells were pulsed for 2 min with 125I-insulin, acid-washed to remove surface binding, and chased. During a 40-min period, about 50% of the internalized 125I-insulin was released intact via a retrocytotic pathway. Retrocytosis was not inhibited by monensin, suggesting that the release was not dependent on acidic endosomes. The remaining insulin dissociated from its receptor in an acidification-sensitive manner and was eventually degraded. Dissociation was 70% complete within 5 min of internalization. When cells were similarly incubated with 125I-Man-6-P proteins, about 35% of the internalized radioactivity was released during a 1-h chase, reflecting proteolytic maturation of the Man-6-P proteins. Dissociation of Man-6-P proteins was acidification-dependent (i.e. inhibited by monensin), and was 50% complete after about 11 min. The results indicate that acidification-dependent dissociation of ligands does not occur in a single step and suggest that multiple endocytic compartments are involved in receptor/ligand sorting.  相似文献   

7.
The notion of an insulin-dependent translocation of the glucose transporter in rat adipocytes was confirmed by immunoblotting and reconstitution of glucose transport activity of subcellular fractions. Quantitatively, however, significantly different results were obtained with these two techniques; when compared with reconstitution, immunoblotting detected translocation of a larger amount of the transporter from a low density microsome fraction to a plasma membrane fraction. The acidtropic agents chloroquine and dibucaine, which have been reported to inhibit the recycling of various receptors, were utilized to study the detailed translocation mechanism of the glucose transporter and the insulin receptor. These acidtropic agents caused accumulation of 125I-insulin in a subcellular fraction probably corresponding to lysosomes. They did not, however, significantly affect either the insulin-induced activation of glucose transport or the recycling of the transporter and the insulin receptor as detected by immunoblotting. About 50% of radioactivity released from adipocytes which were allowed to internalize insulin was due to intact insulin, and chloroquine did not change the release rate of intact insulin, raising the possibility of receptor-mediated exocytosis of insulin. The release of degraded insulin decreased with chloroquine treatment. The results are consistent with the idea that these acidtropic agents mainly act to inhibit degradation of insulin in lysosomes, and their effect on the recycling of the glucose transporter and the insulin receptor is minimal, indicating that the recycling of these membrane proteins proceeds irrespective of organelle acidification. Electron micrographs showed vesicles underneath the plasma membranes, with sizes similar to those of the low density microsome fraction where the internalized glucose transporter and the insulin receptor were located.  相似文献   

8.
To gain insight into the sequence of events that follow endocytotic uptake of insulin receptor complexes, we have examined the interrelationship between the degradative pathway of the insulin ligand and the recycling pathway of the insulin receptor. Tris(hydroxymethyl)aminomethane and other nonamphoteric amines were found to selectively impair insulin receptor recycling while leaving the insulin-degradative pathway intact. In contrast, low concentrations of the lysosomotropic agent chloroquine markedly inhibited intracellular insulin degradation but had little or no affect on the recycling of internalized receptors. Thus, we conclude: (1) that insulin dissociates from its receptor after endocytotic uptake and both receptor and ligand follow a separate intracellular pathway; and (2) that receptor recycling and insulin degradation can be selectively inhibited by Tris and chloroquine, respectively, highlighting the potential usefulness of these agents as intracellular probes in the study of receptor-ligand metabolism.  相似文献   

9.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

10.
The effects of chloroquine and vinblastine (10-100 microM) on insulin degradation and biological action were studied in cultured foetal rat hepatocytes. Insulin degradation, as measured by the release of trichloroacetic acid-soluble radioactivity from 125I-insulin into the medium, was strictly cell-associated, saturable with respect to insulin concentrations and linearly related to the amount of cell-associated hormone. The maximal rate of insulin degradation was 4,700 molecules/min per cell, and its KM about 5 nM. Thus, insulin receptors (30,000 sites/cell; half-life close to 13 hr) must be reutilized 450-fold before being degraded with an average time of reutilization inferior to 10 min. In the presence of 70 microM chloroquine or 100 microM vinblastine, insulin degradation was inhibited by 80% and the amount of cell-associated hormone enhanced 2-3-fold. Nearly total inhibition of insulin-stimulated glycogenesis was obtained with 70 microM chloroquine and 45 microM vinblastine. When hepatocytes were preincubated with chloroquine or vinblastine, insulin binding remained high for up to 4 hr, then progressively decreased thereafter. The addition of 10 nM native insulin during preincubation with the drugs resulted in an earlier and more pronounced decrease in insulin binding, whereas native insulin alone did not induce any change. Both the inhibition of insulin degradation and onset of receptor down-regulation suggest a drug-induced impairment in the receptor reutilization. This defect is correlated to a loss of the glycogenic effect of insulin in cultured foetal rat hepatocytes.  相似文献   

11.
The degradation of insulin in isolated liver endosomes and the relationships of this process with ATP-dependent endosomal acidification have been studied. Incubation of endosomal fractions containing 125I-insulin in isotonic KCl at 30 degrees C resulted in a rapid loss of insulin integrity as judged from trichloroacetic acid precipitability, Sephadex G-50 chromatography, immunoreactivity and receptor binding ability, with a maximum at pH 5-6 (t1/2: 10, 10, 6 and 6 min, respectively). On a log/log plot, the amount of acid-soluble products generated was linearly related to the amount of insulin associated with endosomes (slope, 0.80). Upon incubation, virtually all acid-soluble products diffused out of endosomes as judged from their solubility in aqueous poly(ethyleneglycol). In permeabilized endosomes, intact insulin was also released in part extraluminally, but only when degradation was inhibited did this release increase with lowering pH. ATP shifted the pH for maximal insulin degradation to about 7.5-8.5 and caused endosomal acidification as judged from the uptake of acridine orange and the fluorescence of internalized fluorescein-labeled dextran and galactosylated bovine serum albumin (delta pH about 0.8-0.9). GTP, ITP and UTP exerted comparable effects but with lower potencies. The ability of ATP to alter the pH dependence of insulin degradation was maximal in the presence of Cl-, other anions being less effective (Br- greater than gluconate = SO4(2-) greater than NO3- = sucrose = mannitol) and/or inhibitory (NO3-). Na+, K+ and Li+ supported more effectively ATP-dependent insulin degradation than did choline. Divalent cations were required for the ATP effect (Mg2+ = Mn2+ greater than Co2+ greater than Ni2+ = Zn2 greater than Ca2+). Little or no effects of ATP occurred in the presence of proton ionophores such as monensin and carbonyl cyanide chlorophenylhydrazone, and inhibitors of the proton ATPase such as N-ethylmaleimide. The abilities of nucleotides, ions and inhibitors to support or inhibit ATP-dependent insulin degradation were well correlated with their abilities to affect ATP-dependent acidification. The acidotropic agents chloroquine and quinacrine caused a leftward shift in the pH dependence of insulin degradation and a decrease in maximal degradation; in the presence of ATP, chloroquine almost completely inhibited degradation at pH 5-9. It is concluded that ATP-dependent acidification, in part by enhancing the dissociation of the insulin-receptor complex, is required for optimum degradation of insulin within liver endosomes.  相似文献   

12.
We compared A-14 and A-19 125I-labelled insulin in receptor-binding and degradation. Percent receptor-binding of A-14 and A-19 125I-labelled insulin to 2.4 X 10(9)/ml erythrocytes after 210 min incubation at 15 degrees C was 7.8 and 4.9%, respectively. Percent insulin-receptor binding of A-14 insulin was 1.6 times greater than that of A-19 insulin. A similar result was obtained in an adipocytes insulin binding study. Percent receptor-binding of A-14 and A-19 insulin to 2 X 10(5)/ml fat cells after 30 min incubation in the above buffer was 3.9 and 2.4%, respectively. Degradation of A-14 and A-19 insulin in rat adipocytes was also studied by molecular sieve column chromatography. Isolated rat adipocytes were allowed to associate with A-14 and A-19 125I-insulin for 60 min at 37 degrees C, pH 8.0 in a HEPES-phosphate buffer, and then cells were separated from the buffer by centrifugation. After solubilization with triton X-100, both the solubilized cells and the incubation medium were applied to the Bio-Gel P-30 column to assess the insulin degradation. Degradation of A-14 125I-insulin by the isolated rat adipocytes was 1.6 times greater than that of A-19 125I-insulin. Furthermore, the peak which was thought to be intermediate degradation products of insulin was obtained between the peak of intact insulin and that of 125I-tyrosine. Such a peak of intermediates was much smaller in the incubation media than in the cell-associated materials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The insulin-receptor cycle was investigated in cultured foetal rat hepatocytes by determining the variations in insulin-binding sites at the cell surface after short exposure to the hormone. Binding of 125I-insulin was measured at 4 degrees C after dissociation of prebound native insulin. Two protocols were used: exchange binding assay and binding after acid treatment; both gave the same results. Cell-surface 125I-insulin-receptor binding decreased sharply (by 40%) during the first 5 min of 10 nM-insulin exposure (t1/2 = 2 min) and remained practically constant thereafter; subsequent removal of the hormone restored the initial binding within 10 min. This fall-rise sequence corresponded to variations in the number of insulin receptors at the cell surface, with no detectable change in receptor affinity. The reversible translocation of insulin receptors from the cell surface to a compartment not accessible to insulin at 4 degrees C was hormone-concentration- and temperature-dependent. SDS/polyacrylamide-gel electrophoresis after cross-linking of bound 125I-insulin to cell-surface proteins with disuccinimidyl suberate showed that these variations were not associated with changes in Mr of binding components, in particular for the major labelled band of Mr 130,000. The insulin-receptor cycle could be repeated after intermittent exposure to insulin. Continuous or intermittent exposure to the hormone gave a similar glycogenic response, contrary to the partial effect of a unique short (5-20 min) exposure. A relationship could be established between the repetitive character of the rapid insulin-receptor cycle and the maximal expression of the biological effect in cultured foetal hepatocytes.  相似文献   

15.
Low temperature and the lysosomotropic agent, chloroquine, were used to study the degradation of 125I-insulin in a perfused rat liver. Insulin (1.5 × 10?9m) was removed from the perfusate at 35 °C with a T12 of 12 min, and this process was slowed to 35 min at a temperature of 17 °C. Essentially no degradation of 125I-insulin took place in the liver at 17 °C. After 90 min at that temperature 64% of the liver radioactivity had accumulated in the microsomal fraction of the tissue homogenate, while at 35 °C 60% of the radioactive material was in the supernatant fraction. Greater than 80% of the supernatant radioactivity was acid soluble. Rapid warming of a 17 °C-treated liver to 35 °C allowed the accumulated 125I-insulin in the microsomal fraction to be degraded to acid-soluble products in the normal manner. Chloroquine (0.2 mm) also caused the liver to degrade insulin more slowly. At 60 min after adding 125I-insulin to the chloroquine-treated liver, 50% of the radioactivity in the tissue was still present in the lysosome-rich fraction of the homogenate, while less than 10% was in this fraction in a control liver. The effects of low temperature show transfer of insulin to its degradative site is rate limiting for hormone catabolism and the inhibition by chloroquine suggests lysosomes have a role in insulin degradation by the liver.  相似文献   

16.
The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumably degraded within the lysosomes. It is apparent that NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. This review describes the experiments addressing the interaction of ANP with the NPRA, the receptor-mediated internalization and stoichiometric distribution of ANP-NPRA complexes from cell surface to cell interior, and its release into culture media. It is hypothesized that after internalization, the ligand-receptor complexes dissociate inside the cell and a population of NPRA recycles back to plasma membrane. Subsequently, some of the dissociated ligand molecules escape the lysosomal degradative pathway and are released intact into culture media, which reenter the cell by retroendocytotic mechanisms. By utilizing the pharmacologic and physiologic perturbants, the emphasis has been placed on the cellular regulation and processing of ligand-receptor complexes in intact cells. I conclude the discussion by examining the data available on the utilization of deletion mutations of NPRA cDNA, which has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of NPRA.  相似文献   

17.
Sephadex (G-50 fine grade)-gel chromatography and trichloroacetic acid (TCA) precipitation were used to investigate the effects of chloroquine and bacitracin on the nature of cell-associated radioactivity in studies on the binding and degradation of 125I-insulin in cultured rat hepatocytes. Sephadex peak I, eluted with the void volume, increased with hepatocyte incubation time and comprised 6% of total cell-bound radioactivity at 120 min. However, all radioactivity in this peak was due to unspecific binding. Peak II, corresponding to intact insulin, represented 95% of specifically cell-associated label at 5 min and decreased to 77% at 120 min. Peak III, containing the final low-Mr degradation products, increased with incubation time (22% of specifically bound label at 120 min). The TCA-precipitable and TCA-soluble fractions of hepatocytes extracted with 0.1% SDS were within 4-7% of the proportions of radioactivity in peaks II and III respectively. Scatchard plots based on insulin-binding data from Sephadex chromatography or TCA precipitation were identical. Dissociation studies revealed that at least 75% of the intact insulin associated with the hepatocytes was bound to receptors at the cell surface. Bacitracin increased the proportion of cell-associated intact hormone and decreased that of ligand degraded when analysed by either Sephadex chromatography or TCA precipitation. The proportion of surface-bound to internalized intact hormone remained unaltered, indicating that bacitracin acted predominantly at the cell surface. In the presence of chloroquine, which dramatically increased the contribution of peak I to specific binding, 'intact' insulin was substantially overestimated when determined as the TCA-precipitable fraction. In addition, all peak I material and 50% of cell-associated label in peak II was trapped intracellularly, thereby pointing to the lysosomal or prelysosomal site of action of this drug.  相似文献   

18.
The pancreatic B cell has been used as a model to compare the release of newly synthesized prohormone/hormone with that of stored hormone. Secretion of newly synthesized proinsulin/insulin (labeled with [3H]leucine during a 5-min pulse) and stored total immunoreactive insulin was monitored from isolated rat pancreatic islets at basal and stimulatory glucose concentrations over 180 min. By 180 min, 15% of the islet content of stored insulin was released at 16.7 mM glucose compared with 2% at 2.8 mM glucose. After a 30-min lag period, release of newly synthesized (labeled) proinsulin and insulin was detected; from 60 min onwards this release was stimulated up to 11-fold by 16.7 mM glucose. At 180 min, 60% of the initial islet content of labeled proinsulin was released at 16.7 mM glucose and 6% at 2.8 mM glucose. Specific radioactivity of the released newly synthesized hormone relative to that of material in islets indicated its preferential release. A similar degree of isotopic enrichment of released, labeled products was observed at both glucose concentrations. Quantitative HPLC analysis of labeled products indicated that glucose had no effect on intracellular proinsulin to insulin conversion; release of both newly synthesized proinsulin and insulin was sensitive to glucose stimulation; 90% of the newly synthesized hormone was released as insulin; and only 0.5% of proinsulin was rapidly released (between 30 and 60 min) in a glucose-independent fashion. It is thus concluded that the major portion of released hormone, whether old or new, processed or unprocessed, is directed through the regulated pathway, and therefore the small (less than 1%) amount released via a constitutive pathway cannot explain the preferential release of newly formed products from the B cell.  相似文献   

19.
We studied internalization of 125I-labelled insulin in isolated rat hepatocytes. Using the acidification technique, we were able to dissociate the ligand from its cell-surface receptors, and thus to separate internalized from surface-bound insulin. Because during the first 5 min of incubation of 125I-labelled insulin with freshly isolated hepatocytes there is no loss of internalized label, the ratio of the amount of internalized ligand to the amount of cell-surface-bound ligand may serve as an index of insulin internalization. Within the first 10 min of insulin's interaction with hepatocytes, the plot of the above ratio as a function of time yields a straight line. The slope of this line is referred to as the endocytic rate constant (Ke) for insulin and denotes the probability with which the insulin-receptor complex is internalized in 1 min. At the insulin concentration of 0.295 ng/ml, the Ke is 0.049 min-1. It is independent of insulin concentration until the latter exceeds 1 ng/ml. At the insulin concentration of 3.2 ng/ml, the Ke accelerates to 0.131 min-1. With the Ke being the probability of insulin-receptor-complex internalization, 4.9% of occupied insulin receptors will be internalized in 1 min at an insulin concentration of 0.295 ng/ml, and 13.1% of occupied insulin receptors will be internalized in 1 min at 3.2 ng/ml. When the insulin concentration decreases from 3.2 to 0.3 ng/ml, the Ke decreases accordingly. The half-time of occupied receptor internalization is 15.4 min at the lower insulin concentration and 5.3 min at the higher insulin concentration.  相似文献   

20.
Isolated muscle cells from adult rat heart were used to study myocardial degradation of insulin and the reactions after the initial binding event. After 60 min of association at 37 degrees C, 90% of specifically bound insulin could be dissociated from the cells; this fraction remained unaltered under steady-state conditions (up to 180 min). To assess the nature of cell-associated radioactivity, cardiocytes were solubilized and filtered on Sephadex G-50. After 5 min of association only intact insulin was observed, whereas under steady-state conditions 4% of 125I-labelled insulin bound to the cells was degraded to iodotyrosine-containing fragments. The Km for insulin degradation by isolated heart cells was estimated to be 1.75 x 10(-7)M. Receptor-mediated insulin degradation was studied by examination of the nature of radioactivity released by the cells after different times of association. After 5 min 83% of dissociating material consisted of intact insulin, whereas this fraction decreased to 50% under steady-state conditions. Treatment of cells with the lysosomotropic agent chloroquine (0.1 mM) significantly decreased the fraction that was eluted at the internal column volume. This study demonstrates that insulin degradation by the heart cell occurs by a receptor-independent and a receptor-dependent mechanism. The latter may involve internalization and a lysosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号