首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

2.
The values of the RNA and protein radius of gyration obtained in these studies corroborate the conclusion reported earlier [1] that on average the RNA is nearer to the center of the particle than is the protein. (It should be noted for comparison that the minimal Rg value of the RNA corresponding to its dense packing as a sphere in the center of the 52S subparticle is 49 A.) Moreover, such a great difference in the radii of gyration of RNA and protein implies a definite scheme of mutual RNA and protein arrangement in the 50S subparticle -- namely the distribution of the greater mass of proteins on the RNA surface.  相似文献   

3.
Large ribonucleoprotein subparticles were recovered upon ribonuclease digestion of the 50 S ribosomal subunits of Escherichia coli, partially deproteinized by LiCl. Both their RNA and their protein compositions were analysed. The subunits, treated with LiCl at a concentration of 5.5 m, released an homogeneous subparticle containing proteins L3, L4, L13, L17, L22 and L29, about 70% of the 13 S fragment of 23 S RNA and about 50% of the 18 S one. Slightly larger species of subparticles were obtained from 50 S subunits treated with LiCl at concentrations between 3 m and 5 m; they contained in addition proteins L20, L21 and L23 or L2, L14, L20, L21 and L23 and a few small 23 S RNA fragments. No large subparticle was recovered from the 6 m-LiCl-treated 50 S subunits which contain only proteins L3, L13 and L17. These LiCl subparticles were compared with those obtained from intact, unfolded and sodium doecyl sulphatetreated 50 S subunits.These studies reveal that in the presence of 0.10 m-magnesium acetate there is a very compact area within 50 S subunits consisting of proteins L3, L4, L13, L17, L22 and L29 and of about 60% of 23 S RNA; this area probably has an essential structural role. The results also show that 23 S RNA has a more folded conformation when within the 50 S subunit than when isolated, this conformation being stabilized by some of the 50 S proteins, in particular proteins L4, L22, L20 and L21. Finally these data permit a more definite localization of the primary and/or secondary binding sites of proteins L2, L3, L4, L14, L17, L20, L21 and L22 on 23 S RNA.  相似文献   

4.
The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column.  相似文献   

5.
6.
The spectrum of RNA from the smaller and larger subparticles of rabbit reticulocyte ribosomes was studied as a function of pH, ionic strength, urea concentration and temperature. It was inferred that both RNA species form short double-helical segments of not more than about 10 base-pairs in length. Not more than about 70% of the base residues may be located in double-helical segments. RNA from the larger subparticle is richer in guanine and cytosine residues and its secondary structure is the more stable. These conclusions are based on the use of double-helical RNA from virus-like particles and of unfractionated Escherichia coli tRNA as model systems.  相似文献   

7.
Summary Enzymatic digestion of35S ribosomal protein with pronase yielded 0.14 molar % of the amino acids as N-formylmethionine. Analysis showed that approximately two polypeptide chains in the protein of the 30 S subparticle and approximately nine in the 50 S subparticle start with N-formylmethionine.  相似文献   

8.
The binding of ribosomal proteins L25, L18, and L5 to 5 S RNA results in a conformational change and a destabilization of the 5 S RNA molecule. The changes observed in the near ultraviolet circular dichroism (CD) spectra and in the melting profiles indicate an increase in base stacking uith an accompanying increase in asymmetry of the bases and a decrease in the conformational stability of the 5 S RNA. These results are consistent with the interpretation that the binding of these proteins increases the stacking of specific single-stranded bases in 5 S RNA and aligns them in helical arrays, resulting in a conformation which facilitates base-pairing with nucleotide segment(s) of the ribosomal 23 S RNA or the transfer RNA (or both). The simple and precise difference CD method described here is potentially useful for studying subtle conformational changes of other nucleic acid-protein interactions.  相似文献   

9.
A Lin  T Tanaka  I G Wool 《Biochemistry》1979,18(8):1634-1637
Proteins were extracted from rat liver ribosomal subunits with ethanol and ammonium chloride. The extract from the 40S subunit contained mainly S25, but smaller amounts of a number of other proteins were found as well; the extract from the 60S subparticle had L16 in addition to P1, P2, S25, and several other proteins. S25 and L16 had not been purified before. The former was isolated from the ethanol-ammonium chloride extract by stepwise elution from carboxymethylcellulose with LiCl, chromatography on phosphocellulose, and filtration through Sephadex G-75; L16 was purified by elution from carboxymethylcellulose with LiCl (in steps). The molecular weight of the two proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; and amino acid composition was determined also.  相似文献   

10.
The accessibility of single-stranded sequences of 16S RNA in free state and in ribonucleoprotein particles (RNP) to complementary binding with isoplith fractions of oligonucleotides was studied. RNP had different protein composition and corresponded to intermediate stages of E. coli 30S subunit assembly in vitro. Gel-filtration was used to detect the most strong binding. It was found that S4 essentially inhibited the hexamer binding to RNA. Core proteins bound to 16S RNA strongly increased the shielding of single-stranded regions while split proteins insignificantly changed the hexamer binding. Nevertheless evidence is presented that split proteins might also interact directly with 16S RNA in the 30S subunit.  相似文献   

11.
Summary Antibodies were prepared in rabbits and sheep to rat liver ribosomes, ribosomal subunits, and to mixtures of proteins from the particles. The antisera were characterized by quantitative immunoprecipitation, by passive hemagglutination, by immunodiffusion on Ouchterlony plates, and by immunoelectrophoresis. While all the antisera contained antibodies specific for ribosomal proteins, none had precipitating antibodies against ribosomal RNA. Rat liver ribosomal proteins were more immunogenic in sheep than rabbits, and the large ribosomal subunit and its proteins were more immunogenic than those of the 40S subparticle. Antisera specific for one or the other ribosomal subunit could be prepared; thus it is unlikely that there are antigenic determinants common to the proteins of the two subunits. When ribosomes, ribosomal subunits, or mixtures of proteins were used as antigens the sera contained antibodies directed against a large number of the ribosomal proteins.Abbreviations TP total proteins—used to designate mixtures of proteins from ribosomal particles, hence TP80 is a mixtures of all the proteins from 80S ribosomes - TP60 the proteins from 60S subunits - TP40 the proteins from 40S particles  相似文献   

12.
Elongation factor G is shown to protect the nuclease splitting off the 3′ -terminal 11 S fragment from the 23 S RNA within the ribosomal 50 S subparticle.  相似文献   

13.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading.  相似文献   

14.
The digestion of E. coli 16S RNA with a single-strand-specific nuclease produced two fractions separable by gel filtration. One fraction was small oligonucleotides, the other, comprising 67.5% of the total RNA, was highly structured double helical fragments of mol. wt. 7,600. There are thus about 44 helical loops of average size corresponding to 12 base pairs in each 16S RNA. 10% of the RNA could be digested from native 30S subunits. Nuclease attack was primarily in the intraloop single-stranded region but two major sites of attack were located in the interloop single-stranded regions. Nuclease digestion of unfolded subunits produced three classes of fragments, two of which, comprising 80% of the total RNA, were identical to fragments from 16S RNA. The third, consisting of 20% RNA, together with an equal weight of peotein, was a resistant core (sedimentation coefficient 7S).  相似文献   

15.
Investigations that are being carried out in various laboratories including ours clearly provide the answer which is in the negative. Only the direct evidences obtained in this laboratory will be presented and discussed. It has been unequivocally shown that the interaction between 16S and 23S RNAs plays the primary role in the association of ribosomal subunits. Further, 23S RNA is responsible for the Binding of 5S RNA to 16S.23S RNA complex with the help of three ribosomal proteins, L5, L18, L15/L25. The 16S.23S RNA complex is also capable of carrying out the following ribosomal functions, although to small but significant extents, with the help of a very limited number of ribosomal proteins and the factors involved in protein synthesis: (a) poly U-Binding, (B) poly U-dependent Binding of phenylalanyl tRNA, (c) EF-G-dependent GTPase activity, (d) initiation complex formation, (e) peptidyl transferase activity (puromycin reaction) and (f) polyphenylalanine synthesis. These results clearly indicate the direct involvement of rRNAs in the various steps of protein synthesis. Very recently it has Been demonstrated that the conformational change of 23S RNA is responsible for the translocation of peptidyl tRNA from the aminoacyl (A) site to the peptidyl (P) site. A model has Been proposed for translocation on the Basis of direct experimental evidences. The new concept that ribosomal RNAs are the functional components in ribosomes and proteins act as control switches may eventually turn out to Be noncontroversial.  相似文献   

16.
Summary The formation of a complex between individual 30S ribosomal proteins and 16S ribosomal RNA was studied by three techniques: zone centrifugation, molecular-sieve chromatography and electrophoresis in polyacrylamide gels. Five 30S proteins form a stable complex with the RNA under the conditions used to assemble ribosomes. Specific and nonspecific complex formation can be distinguished by an analysis of the concentration-dependence for complex formation. Similarly, competition experiments between heterologous proteins that bind to RNA can also be used to establish the uniquness of the RNA binding sites for ribosomal proteins. The data show that four of the five proteins bind to unique sites on the RNA. The fifth protein binds nonspecifically to the RNA. In addition, cooperative interactions between several proteins were observed; these enhance the interaction of proteins with the 16S RNA. A partial assembly sequence for the 30S ribosomal subunit is presented.  相似文献   

17.
Identification of single-stranded regions in Torulopsis utilis 5S RNA was attempted by the use of Nuclease S1, a single-strand specific endonuclease. When T. utilis 5S RNA was subjected to prolonged incubation with Nuclease S1, about 50% of the substrate 5S RNA remained as large oligonucleotide "cores." Such Nuclease S1-resistant fragments were purified and sequenced by column chromatographic procedures. These analyses revealed that regions around positions 12, 40, 57, and 110 are in exposed single-stranded loops at 37 degrees C and that regions around positions 12 and 40 are most exposed at 20 degrees C. These results are compatible with our secondary structure model for T. utilis 5S RNA (Nishikawa & Takemura (1974) J. Biochem. 76, 935-947) except that the 5' part of the molecule (from the region around position 22 to that around position 57) might have a somewhat looser conformation than our secondary structure model suggests. The implications of such results are also discussed in relation to the presumed function of the sequence C-G-A-U-C (around position 40) as one of the recognition sites for initiator tRNA binding on ribosomes.  相似文献   

18.
RNA-protein cross-links were introduced into Escherichia coli 30S subunits by treatment with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide. 16S rRNA, cross-linked to 30S ribosomal proteins, was isolated and hybridized with seven single-stranded bacteriophage M13-DNA probes. These probes, each carrying an inserted rDNA fragment, were used to select contiguous RNA sections covering domains 3 and 4 (starting at nucleotide 868 and ending at the 3'OH terminus) of the 16S rRNA. The proteins covalently linked to each selected RNA section were identified by two-dimensional polyacrylamide gel electrophoresis. Proteins S7 and S9 were shown to be efficiently cross-linked to multiple sites belonging to both domains.  相似文献   

19.
It was shown that the increase of Mg2+ ions concentration in the medium from 0,01 M to 0,03 M speeds up the formation of a codon-dependent complex between 14C-Phe-tRNA and the 30S ribosomal subparticle. Under high MgCl2 concentration (0,02 M) the increase of NH4Cl concentration also accelerates the specific binding of 14C-Phe-tRNA to the 30S subparticle. In the presence of 0,005 M MgCl2 0,5 M urea significantly decreases the rate of the specific binding. 0,5 M ethanol does not have any noticeable effect on the kinetics of the reaction.  相似文献   

20.
Specialized proteins known as molecular chaperones bind transiently to non-native conformational states of proteins and protein complexes to promote transition to a biologically active conformation. Recently, it was demonstrated in vitro that proteins do not uniquely possess this activity. We show that mitochondrial 12S and 16S ribosomal RNA can fold chemically denatured proteins and reactivate heat-induced aggregated proteins in vitro. This chaperone action is ATP-independent. The specific secondary structure of the mitochondrial rRNA is critical to its folding activity. Furthermore, mutant mitochondrial 16S rRNA from aged cardiac muscle cells lacked this activity. We propose that mitochondrial 12S and 16S ribosomal RNA may play an important role in protein folding in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号