首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

2.
A dog kidney (Na+ + K+)-ATPase preparation also catalyzes K+-independent and K+-activated phosphatase reactions with p-nitrophenyl phosphate as substrate. K+-independent activity increases with declining pH over the range 7.5 to 5.8, whereas the other two activities decrease. The increased K+-independent activity is similar with imidazole, histidine, and several Good buffers, and is thus attributable to free H+, probably by affecting enzyme conformations rather than by changing affinity for Mg2+ or substrate or by H+ occupying specific K+-sites. The decrease in K+-phosphatase and (Na+ + K+)-ATPase activities with pH also occurs similarly with those buffers, and is not due to changes in apparent affinity for substrate or for cation activators. However, the Good buffers Pipes and ADA inhibit the K+-independent phosphatase reaction strongly, the K+-activated reaction moderately, and the (Na+ + K+)-ATPase reaction little; both contain two acidic groups, unlike the other buffers tested. Inhibition of the phosphatase reaction by Pipes is associated with a decreased apparent affinity for K+ and an increased sensitivity to inhibition by Na+ and ADP, consistent with Pipes hindering conformational transitions to the E2 enzyme forms required for phosphatase hydrolytic activity.  相似文献   

3.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

4.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

5.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significance in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca-2+ up to 300 pmol/mg protein of a K+ -resistant, ADP-sensitive material were formed. If phosphorylation was from [gamma-32-P]CTP up to 800 pmol-32-P/mg protein of an ADP-resistant, K+ -sensitive phosphorylated material were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+ -stimulated, K+ -sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

6.
A single injection of different doses of T3 (0.5, 5, 20, and 50 micrograms/g) to Singi fish caused an increase in Na+K+-ATPase activity in crude liver homogenate in a dose-dependent non-linear fashion on the 3rd d. Ca++- and Mg++-ATPase activity increased only with 20 and 50 micrograms/g of T3. Lowering the dose of T3 to 0.1 microgram and 0.25 microgram/g in a single injection had not effect on these enzyme activities. TETRAC (1, 2, and 4 micrograms/g) and TRIAC (2 and 4 micrograms/g) in a single injection enhanced the activities of Na+K+-ATPase, but Ca++- and Mg++-ATPase activities remained unchanged on the 3rd d. Immersion of Singi fish in thiourea-containing medium (1 mg/ml) for 30 d caused reduction in Na+K+-ATPase activity, but Ca++- and Mg++-ATPase activity remained unaltered. The reduced level of Na+K+-ATPase activity in the thiourea-treated hypothyroid fish was recovered and even brought above the control level by a single injection of T3 at the dose of 0.5 microgram/g. Differential sensitivity of various ion-specific ATPases to T3 in liver of Singi fish is thus documented.  相似文献   

7.
The Na(+)-ATPase activity of Na+,K(+)-ATPase in the absence of K+ was least dependent on the sodium concentration when the pH was 9.5. Around 40% of the phosphoenzyme formed from ATP in the presence of 0.5 mM MgCl2 at alkaline pH was insensitive to both KCl and ADP. High-Na+ chase reversed this insensitivity, i.e., the phosphoenzyme became sensitive to KCl or ADP. On the other hand, phosphorylation at 0.1 mM MgCl2 instead of 0.5 mM showed at least 95% sensitivity to KCl. These observations suggest that ADP- and KCl-insensitive phosphoenzyme was formed when excess Mg++ was present during phosphorylation at alkaline pH. This phosphoenzyme might be an intermediate in the process of ATP hydrolysis.  相似文献   

8.
A mechanism of K-insensitive, ouabain-dependent liberation of Na+ from the cell during an increase in ADP intracellular concentration is studied. It is shown that the increase in the ADP/ATP ratio does not change the Na+, K+-ATPase affinity to K+ ions and does not result in the Na-activated, K-independent ATPase reaction. ADP protects ATPase from the inhibition by ouabain which is accounted for by a decrease in the concentration of a glycoside-sensitive form of the enzyme E2-P due to a turnover of the phosphokinase step of the reaction, but not due to the binding of free Mg2+ ions. The results obtained suggest that the increase in ADP concentration within the cell activates Na-Nan exchange along Na-transporting channels of the ionic pump.  相似文献   

9.
Trinitrophenyl derivatives of adenine nucleotides (TNP-nucleotides: 2',3'-O-2,4,6-trinitrocyclohexadienylidene complexes at neutral or basic pH) are potent inhibitors of (Na,K)-ATPase activity. The inhibitory potency of the derivatives tested followed the sequence: TNP-ADP greater than TNP-ATP greater than TNP-AMP much greater than TNP-IMP greater than TNP-adenosine. In the presence of Na+ plus K+, high and low affinity activation of ATPase activity by ATP was observed. Under these conditions, TNP-ATP inhibited (Na,K)-ATPase activity competitively with respect to ATP at the kinetically defined "low affinity ATP site." In the presence of Na+ alone, only high affinity activation by ATP was observed. Under these conditions, TNP-ATP inhibited (Na)-ATPase and enzyme phosphorylation by competing with ATP at the kinetically defined "high affinity ATP site." The Ki values for inhibition were similar to the KD values determined by direct TNP-ATP binding measurements, indicating that the same TNP-ATP site is involved in the inhibition of (Na,K)-ATPase and (Na)-ATPase activities. We conclude that high and low affinity ATP "sites" are interconvertible (i.e. they represent two forms of the same site) and do not co-exist independently. TNP-ATP also inhibited competitively the K+-stimulated p-nitrophenyl phosphatase activity and enzyme phosphorylation by Pi, suggesting that the catalytic site for these substrates is associated with the TNP-ATP site. A kinetic model for (Na,K)-ATPase turnover based on a single ATP site which changes affinity during turnover is presented. The model was analyzed by the King-Altman (1956) J. Phys. Chem. 60, 1375-1378) method to obtain the steady state equation for the rate of ATP hydrolysis as a function of ATP concentration. Computer simulations using published values of the rate constants of intermediate steps suggest that the model is adequate to describe the observed dependence of enzyme activity on ATP concentration and the inhibition by TNP-ATP. The implications of these results on the structure and mechanism of the (Na,K) pump are discussed.  相似文献   

10.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

11.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

12.
Of six tissues sampled from the osmoregulating clam Rangia cuneata, mantle contained the highest concentration of Na++K+-ATPase activity and ouabain binding sites. Acclimation to low salinities was accompanied by adaptive increases in Na++K+-ATPase activity in mantle but not in gill. Since the number of ouabain binding sites did not show parallel increases, the mechanism of acclimation to reduced salinity in Rangia appears to involve activation of pre-existing pump sites in the mantle epithelium.  相似文献   

13.
The paper describes the interaction of ATP, Na+ and K+ with (NaK)-ATPase exploiting the inactivation by reaction with NBD-chloride as an analytical tool for the evaluation of enzyme ligandation with the various effectors. 1. The inactivation of (NaK)-ATPase by reaction with NBD-chloride showing under all conditions studied a pseudo first-order rate rests on the alkylation of thiol groups in or near catalytic centre. ATP bound to catalytic centre prevents from enzyme inactivation by NDD-chloride through protection of these thiol groups from alkylation. Na+ and K+ affect the reactivity of the thiol groups towards NBD-chloride either indirectly via influencing ATP binding or more directly via changing the conformation of catalytic centre. Proceeding from these interrelations, the interaction of the various effectors with the enzyme was analyzed. 2. The K'D-values of various nucleotides determined by our approach correspond to the values obtained by independent methods. As shown for the first time, two catalytic centres per enzyme molecule exist. They exhibit high or low affinity to both ATP and ADP apparently caused by anticooperative interaction of the half-units of the enzyme through intersubunit communication ("half-of-the-sites reactivity"). 3. In the absence of ATP, Na+ or K+ ligandation of (NaK)-ATPase produce opposite effects on the reactivity of the thiol groups of catalytic centres reflecting different changes of their conformation. This corresponds to the well-known antagonistic effect of Na+ and K+ on some partial reactions of (NaK)-ATPase. The Na+ and K+ concentrations required to change thiol reactivity are rather high, i.e. the ionophoric centres for both Na+ and K+ are not readily accessible for cation complexation in the absence of enzyme complexation with ATP. 4. Na+ being without effect on ATP binding to the enzyme also does not influence the inactivating reaction with NBD-chloride while K+ by decreasing ATP binding dramatically decreases the protective effect of ATP. The K+ affinity of the enzyme-ATP complex is by more than two orders of magnitude higher than that of free enzyme. Na+ ligandation of the K+-liganded enzyme-ATP complex reverses the effect of K+ ligandation and produces a protective effect which distinctly surpasses that of the complexation of free enzyme with ATP. Hence, the enzyme molecule carries simultaneously ionophoric centres for both Na+ and K+. 5. The findings that per enzyme molecule ionophoric centres for Na+ and K+, and two catalytic centres with anticooperative interaction coexist corroborate the corresponding basic predictions of the flip-flop concept of (NaK)-ATPase pump mechanism, and explain some peculiar kinetic features of transport and enzyme activities of (NaK)-ATPase.  相似文献   

14.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

15.
Recently, we have shown that a hydrophobic amine (AU-1421) produces an irreversible inactivation of Na+/K(+)-ATPase activity. This inactivation was prevented by K+ and its congeners. In this study, we examined the possibility of Ca2+ or ethylenediamine as a probe of the K+ occlusion center of Na+/K(+)-ATPase. The inactivation by AU-1421 was prevented by Ca2+ with an apparent high affinity (approximately 0.1 mM). Ca2+ protection was cancelled by high concentrations of ATP, ADP or Mg2+. Ca2+ and K+ were similar in these respects. Kinetic analyses of the above data indicated the presence of two AU-1421 occlusion sites on the enzyme, either one of which is susceptible to Ca2+ occlusion. Ethylenediamine also prevented the inactivation by AU-1421 or by C12E8 solubilization of the enzyme, suggesting that ethylenediamine, like K+, stabilized the enzyme. However, an apparent affinity of ethylenediamine (approximately 1.4 mM) was one order of magnitude lower than that of K+ (approximately 0.2 mM), and the protective manner did not show a simple competition. In addition, ethylenediamine binding was unaffected by ATP or ADP at a low affinity site, and antagonized K+ binding. From these results we concluded that ethylenediamine does not act like K+ or Ca2+ in protecting AU-1421 inactivation, since it can't stabilize the enzyme conformation as an E2 (K(+)-bound form).  相似文献   

16.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

17.
1. An energy dependence of the Na+ influx and of the "extra-Na+ influx" across the microvilli membrane was demonstrated in an in vitro preparation of the rat jejunum by adjustment of low ATP/ADP quotients. The monosaccharide influx does not show this dependence. 2. The similar relationship of monosaccharide-dependent Na+ influx and Na+ influx without monosaccharide with the energy state in the mucosa cells suggests a common control system. 3. A constant stoichiometry between monosaccharide and "extra-Na+ influx" can be maintained only under constant intracellular conditions. 4. The changes of the Na+ and K+ influxes by so-called Na+ dependently transported monosaccharides correspond to those which can be elicited by lowering the ATP/ADP ratio in the in vitro preparation. 5. A mechanism is discussed in which an ATP-utilizing reaction is stimulated in the microvilli owing to the monosaccharide transport, thus locally discontinuing the condition for uncoupling of an (Na, K)-ATPase and eliciting an "extra-Na+ influx".  相似文献   

18.
The effect of anti beta adrenoceptor IgG from chagasic sera upon Ca2+-ATPase and Na++K+-ATPase of myocardial membrane was studied. Chagasic IgG stimulated Ca2+-ATPase and inhibited Na++K+-ATPase activities. Both enzymatic effects of the IgG could be prevented after beta adrenoceptor blockade or after the absorption of chagasic IgG with turkey red blood cells. Isoproterenol acted similarly. These results provide information concerning to the biochemical mechanism, by which an antibody, known to activate adenylate cyclase system coupled to cardiac beta adrenoceptor, produces stimulation of myocardial contractility.  相似文献   

19.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

20.
The inhibition of Ca2+-dependent ATPase from SR [EC 3.6.1.3] by ADP was of mixed type under both low Ca2+ and high Mg2+ concentration and high Ca2+ and low Mg2+ concentrations. On the other hand, the inhibition of Na+, K+-dependent ATPase [EC 3.6.1.3] by ADP was of competitive type in the presence of low and high K+ concentrations. These results suggest that ADP is released before Pi from the phosphoenzyme with bound ADP (EPADP) in the case of Ca2+-ATPase, but that Pi is released before ADP in the case of Na+, K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号