首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
He X 《Cell》2006,127(1):40-42
In this issue of Cell, Yang et al. (2006b) show that PDGF, a growth factor that induces the transition of epithelial cells to mesenchymal cells, stimulates the c-Abl kinase-dependent phosphorylation of p68 RNA helicase. Phosphorylated p68 dissociates beta-catenin from the Axin destruction complex, thereby promoting nuclear beta-catenin signaling independent of Wnt activation.  相似文献   

3.
beta-Catenin, a key component of the canonical Wnt pathway, is also regulated by tyrosine phosphorylation that regulates its association to E-cadherin. Previously, we reported its association with the hepatocyte growth factor (HGF) receptor Met at the membrane. HGF induced Met-beta-catenin dissociation and nuclear translocation of beta-catenin, which was tyrosine-phosphorylation-dependent. Here, we further investigate the Met-beta-catenin interaction by selectively mutating several tyrosine residues, alone or in combination, in beta-catenin. The mutants were subcloned into FLAG-CMV vector and stably transfected into rat hepatoma cells, which were treated with HGF. All single or double-mutant-transfected cells continued to show HGF-induced nuclear translocation of FLAG-beta-catenin except the mutations affecting 654 and 670 simultaneously (Y654/670F), which coincided with the lack of formation of beta-catenin-TCF complex and DNA synthesis, in response to the HGF treatment. In addition, the Y654/670F-transfected cells also showed no phosphorylation of beta-catenin or dissociation from Met in response to HGF. Thus, intact 654 and 670 tyrosine residues in beta-catenin are crucial in HGF-mediated beta-catenin translocation, activation and mitogenesis.  相似文献   

4.
5.
6.
The beta-catenin pathway plays a critical role in the pathogenesis of certain types of cancers. To gain insight into mechanisms by which altered receptor tyrosine kinases regulate cytoplasmic beta-catenin accumulation, the effect of an oncogenic receptor originated from Nantes (RON) variant on beta-catenin accumulation and the role of beta-catenin in RON-mediated tumorigenic activities were studied. In NIH3T3 cells harboring oncogenic variant RONDelta160, increased beta-catenin accumulation with tyrosine phosphorylation and nuclear translocation was observed. Overexpression of RONDelta160 also resulted in increased expression of beta-catenin target genes c-myc and cyclin D1. By analyzing cellular proteins that regulate beta-catenin stabilities, it was found that RONDelta160 activates the protein disheveled (DVL) and inactivates glycogen synthase kinase-3beta by Ser-9 residue phosphorylation. These effects were channeled by RONDelta160-activated PI 3-kinase-AKT pathways that are sensitive to specific inhibitors, such as wortmannin, but not to other chemical inhibitors. Silencing RONDelta160 expression by specific small interfering RNA blocked not only beta-catenin expression but also c-myc and cyclin D1 expression, suggesting that RON expression is required for the activation of the beta-catenin signaling pathway. Moreover, it was found that knockdown of the beta-catenin gene expression by small interfering RNA techniques reduces significantly the RONDelta160-mediated NIH3T3 cell proliferation, focus-forming activities and anchorage-independent growth. Thus, the oncogenic RON variant regulates beta-catenin stabilities through activation of DVL and inactivation of glycogen synthase kinase-3beta. The activated beta-catenin cascade is one of the pathways involved in tumorigenic activities mediated by the oncogenic RON variant.  相似文献   

7.
In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT1A receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons.  相似文献   

8.
9.
The nuclear p68 RNA helicase is essential for normal cell growth. The protein plays a very important role in early organ development and maturation. In our previous report, we showed that recombinant p68 RNA helicase was phosphorylated at serine/threonine and tyrosine residue(s). In the present study, we examined the phosphorylation status of p68 in six different cancer cell lines and compared the results with those in cells derived from the corresponding normal tissues. We showed here that p68 was phosphorylated at tyrosine residue(s) in all tested cancer cells but not in the corresponding normal cells/tissues. The tyrosyl phosphorylation of p68 also responded to platelet-derived growth factor. It is thus clear that p68 phosphorylation at tyrosine residue(s) is associated with abnormal cell proliferation and cancer development. The tyrosyl phosphorylation(s) was diminished if the cancer cells were treated with apoptosis agents, such as tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducer ligand, and STI-571. The tyrosyl phosphorylation of p68, however, was not affected by other anticancer drugs, such as piceatannol, etoposide, and taxol. The close correlation between p68 phosphorylations and cancer may provide a useful diagnostic marker and potential therapeutic target for cancer treatment.  相似文献   

10.
Yang L  Lin C  Liu ZR 《Cellular signalling》2005,17(12):1495-1504
P68 nuclear RNA helicase is essential for normal cell growth. The protein plays a very important role in cell development and proliferation. However, the molecular mechanism by which the p68 functions in cell developmental program is not clear. We previously observed that bacterially expressed his-p68 was phosphorylated at multiple sites including serine/threonine and tyrosine [L. Yang, Z.R. Liu, Protein Expr. Purif., 35: 327]. Here we report that p68 RNA helicase is phosphorylated at tyrosine residue(s) in HeLa cells. Phosphorylation of p68 at threonine or tyrosine residues responds differently to tumor necrosis factor alpha (TNF-alpha)induced cell signal. Kinase inhibition and in vitro kinase assays demonstrate that p68 RNA helicase is a cellular target of p38 MAP kinase. Phosphorylation of p68 affects the ATPase and RNA unwinding activities of the protein. In addition, we demonstrate here that phosphorylation of p68 RNA helicase controls the function of the protein in the pre-mRNA splicing process. Interestingly, phosphorylation at different amino acid residues exhibits different regulatory effects. The data suggest that function(s) of p68 RNA helicase may be subjected to the regulation of multiple cell signal pathways.  相似文献   

11.
Nuclear translocation of beta-catenin is a hallmark of Wnt signaling and is associated with various cancers. In addition to the canonical Wnt pathway activated by Wnt ligands, growth factors such as epidermal growth factor (EGF) also induce beta-catenin dissociation from the adherens junction complex, translocation into the nucleus, and activation of target genes such as c-myc. Here we report that EGF-induced beta-catenin nuclear localization and activation of c-myc are dependent on the deacetylase HDAC6. We show that EGF induces HDAC6 translocation to the caveolae membrane and association with beta-catenin. HDAC6 deacetylates beta-catenin at lysine 49, a site frequently mutated in anaplastic thyroid cancer, and inhibits beta-catenin phosphorylation at serine 45. HDAC6 inactivation blocks EGF-induced beta-catenin nuclear localization and decreases c-Myc expression, leading to inhibition of tumor cell proliferation. These results suggest that EGF-induced nuclear localization of beta-catenin is regulated by HDAC6-dependent deacetylation and provide a new mechanism by which HDAC inhibitors prevent tumor growth.  相似文献   

12.
The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated PDGF receptor, thus inhibiting cell proliferation. Recently we have shown that LMW-PTP is specifically phosphorylated by c-Src in a cytoskeleton-associated fraction in response to PDGF, and this phosphorylation increases LMW-PTP activity about 20-fold. LMW-PTP strongly influences cell adhesion, spreading, and chemotaxis induced by PDGF stimulation, by regulating the phosphorylation level of p190Rho-GAP, a protein that is able to regulate Rho activity and hence cytoskeleton rearrangement. In the present study we investigate the physiological role of the two LMW-PTP tyrosine phosphorylation sites, using LMW-PTP mutants on tyrosine 131 or 132. We demonstrate that each tyrosine residue is involved in specific LMW-PTP functions. Both of them are phosphorylated during PDGF signaling. Phosphorylation on tyrosine 131 influences mitogenesis, dephosphorylating activated PDGF-R and cytoskeleton rearrangement, acting on p190RhoGAP. Phosphorylation on tyrosine 132 leads to an increase in the strength of cell substrate adhesion, down-regulating matrix metalloproteases expression, through the inhibition of Grb2/MAPK pathway. In conclusion, LMW-PTP tyrosine phosphorylation on both Tyr(131) or Tyr(132) cooperate to determine a faster and stronger adhesion to extracellular matrix, although these two events may diverge in timing and relative amount.  相似文献   

13.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

14.
Raf kinases are important intermediates in epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this report, we show that the A-Raf kinase is associated with activated EGF receptor complexes and with PDGF receptor (PDGFR) complexes independent of prior PDGF treatment. The ability of A-Raf to associate with receptor tyrosine kinases could provide a Ras-GTP-independent mechanism for the membrane localization of A-Raf. Expression of a partially activated A-Raf mutant resulted in decreased tyrosine phosphorylation of the PDGFR, specifically on Y857 (autophosphorylation site) and Y1021 (phospholipase Cgamma1 (PLCgamma1) binding site), but not the binding sites for other signalling proteins (Nck, phosphatidylinositol 3'-kinase (PI3K), RasGAP, Grb2, SHP). Activated A-Raf expression also altered the activation of PLCgamma1, and p85-associated PI3K. Thus, A-Raf can regulate PLCgamma1 signalling via a PDGFR-dependent mechanism and may also regulate PI3K signalling via a PDGFR-independent mechanism.  相似文献   

15.
16.
Platelet-derived growth factor (PDGF) induces the time and dose dependent serine/threonine phosphorylation of pp64, a nuclear protein in normal rat kidney (NRK) cells. pp64 is phosphorylated additionally on tyrosine in SSV-transformed NRK cells. To further characterize the regulation of phosphorylation of pp64, other mitogens and inhibitors were studied. 12-O-tetradecanoylphorbol-13-acetate (TPA) but not epidermal growth factor (EGF) or insulin induced the phosphorylation of nuclear pp64. Addition of the inhibitor H7 to TPA-treated NRK cells resulted in a striking further increase in phosphorylation of pp64 and, to a lesser extent, in NRK cells treated with PDGF and H7. When cells were treated with PDGF and H7, pp64 was recognized by anti-phosphotyrosine antisera. The increased phosphorylation induced by H7 was inhibited when forskolin was included. This loss of phosphorylation in pp64 with forskolin treatment paralleled a loss of immunoreactivity of pp64 to anti-phosphosphotyrosine. Complex and independent pathways thus appear to signal the growth factor dependent nuclear phosphorylation of pp64, involving phosphorylations both on serine/threonine and on tyrosine.  相似文献   

17.
18.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

19.
20.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号