首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots'' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL). Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass), but also molecular phenotype (metabolite profiles). Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.  相似文献   

2.
The Vancouver Island marmot (Marmota vancouverensis; VIM) is one of North America's most endangered species with fewer than 150 individuals remaining in the wild. A captive breeding program was established across four facilities in Canada as an insurance population and source of animals for reintroduction to the wild. The purpose of this study was to gather information about the basic reproductive biology and behavior of this species, which is essential to improve captive breeding programs. Regular fecal samples were obtained from adult female (n = 14) and male (n = 10) marmots, 2 years of age and older, over 1-3 breeding seasons (2-3 months duration posthibernation) for steroid hormone analysis. Enzyme immunoassays were validated for quantifying fecal testosterone metabolite concentrations for males, and fecal estrogen and progesterone metabolite concentrations for females. Results indicated that fecal progesterone metabolite concentrations can be used to monitor ovulation and pregnancy. Behavioral monitoring through infrared video surveillance was conducted in four breeding pairs over a 2-year period (n = 7 behavioral profiles). Breeding behaviors correlated strongly with changes in reproductive endocrine profiles. A high frequency of play behavior or "wrestling" was observed in conjunction with breeding activity before an elevation in progesterone metabolite concentrations. Impending parturition was associated with increased aggression and exclusion of the male from the maternal nestbox as well as an increase in nesting activity. Observational data combined with hormonal analysis suggest that female VIMs are induced ovulators and that multiple breeding attempts may be required for ovulation and conception. Gestation appears to be approximately 34 days from peak breeding activity (32 days from estimated ovulation). Fecal testosterone concentrations suggest that testicular activity is seasonal with the reproductive activity occurring immediately posthibernation. Monitoring breeding behavior is a useful means of indicating estrus, conception and pregnancy, which can also be supported by the hormonal analysis of daily fecal samples of individual animals.  相似文献   

3.
The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB) samples using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) could be used for predicting pathologic response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer. After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.  相似文献   

4.
In production-scale bioreactors microorganisms are exposed to a continually changing environment. This may cause loss of viability, reduction of the yield of biomass or desired metabolites, and an increase in the formation of by-products. In fed-batch production of baker's yeast, profiles may occur in substrate and oxygen concentrations and in pH. This article deals with the influence of a periodically changing oxygen concentration on the growth of baker's yeast in a continuous culture. Also, influences on the production of ethanol, glycerol, acetic acid, and on the composition of the cells were investigated. It was found that relatively fast fluctuations between oxygen-unlimited and oxygen-limited conditions with a frequency of 1 or 2 min had a distinct influence on the biomass and metabolite production. However, RNA, protein, and carbohydrate contents measured in cells exposed to fluctuations differed little from those in cells from an oxygen-unlimited or an oxygen-limited culture. The respiration and fermentation capacities of cells exposed to fluctuations can be larger than the capacities of cells grown under oxygen-unlimited conditions.  相似文献   

5.
The release and absorption profiles from the vagina of PGE2 in different vehicles used for cervical ripening and labour induction have been studied observing changes in concentrations of PGE metabolite (PGEM) and PGF metabolite (PGFM). In all groups a rise in PGEM concentration occurred over the 6 hour observation time but with wide variation. The profiles obtained differed markedly between the preparations under investigation correlating with the uterine contractions generated. PGFM generally showed little change. The model used could be explored further to enable modification of the vehicles used for PGE2 incorporation to achieve improved clinical results.  相似文献   

6.
Metabolite changes in plant leaves during exposure to low temperatures involve re‐allocation of a large number of metabolites between sub‐cellular compartments. Therefore, metabolite determination at the whole cell level may be insufficient for interpretation of the functional significance of cellular compounds. To investigate the cold‐induced metabolite dynamics at the level of individual sub‐cellular compartments, an integrative platform was developed that combines quantitative metabolite profiling by gas chromatography coupled to mass spectrometry (GC‐MS) with the non‐aqueous fractionation technique allowing separation of cytosol, vacuole and the plastidial compartment. Two mutants of Arabidopsis thaliana representing antipodes in the diversion of carbohydrate metabolism between sucrose and starch were compared to Col‐0 wildtype before and after cold acclimation to investigate interactions of cold acclimation with subcellular re‐programming of metabolism. A multivariate analysis of the data set revealed dominant effects of compartmentation on metabolite concentrations that were modulated by environmental condition and genetic determinants. While for both, the starchless mutant of plastidial phospho‐gluco mutase (pgm) and a mutant defective in sucrose‐phosphate synthase A1, metabolic constraints, especially at low temperature, could be uncovered based on subcellularly resolved metabolite profiles, only pgm had lowered freezing tolerance. Metabolic profiles of pgm point to redox imbalance as a possible reason for reduced cold acclimation capacity.  相似文献   

7.
The metabolic consequences of Huntington's disease in the R6/2 mouse model were investigated using NMR spectroscopy and pattern recognition to characterize selected brain regions, muscle, blood, and urine. Global increases in relative brain concentrations of osmolytes, creatine, glutamine, and lactate, and decreases in acetate and N-acetylaspartate were found together with striatal-specific lower concentrations of GABA and choline. Clear differentiation of R6/2 and wild-type mice was also obtained for urine and blood metabolite profiles that may have applicability for monitoring HD in human populations.  相似文献   

8.
In the field of functional genomics increasing effort is being undertaken to analyze the function of orphan genes using metabolome data. Improved analytical equipment allows screening simultaneously for a high number of metabolites. Such metabolite profiles are analyzed using multivariate data analysis techniques and changes in the genotype will in many cases lead to different metabolite profiles. Here, a theoretical framework that may be applied to identify the function of orphan genes is presented. The approach is based on a combination of metabolome analysis combined with in silico pathway analysis. Pathway analysis may be carried out using convex analysis and a change in the active pathway structure of deletion mutants expressed in a different metabolite profile may disclose the function or the functional class of an orphan gene. The concept is illustrated using a simplified model for growth of Saccharomyces cerevisiae.  相似文献   

9.
To select an appropriate sampling method for comparison of metabolite profiles between planktonic and biofilm Staphylococcus aureus using NMR techniques, we evaluated three methods: quenching-centrifugation (QC), filtration-quenching (FQ) and filtration-quenching-lyophilization (FQL). We found differences in metabolite loss, yield, reproducibility and metabolite profile. QC caused severe metabolite leakage and possible decomposition of nucleotides. FQ achieved high yields and reproducibility, although it had the disadvantages of long filtration and rinse times before quenching. FQL resulted in a loss of a few metabolites and a lower yield due to lyophilization. Although the biomarkers discovered by each method were nearly the same and seemed insensitive to technical variances, we conclude that FQ is the most appropriate sampling method because of its high yield and reproducibility.  相似文献   

10.
F. Maciak  H. Harms 《Plant and Soil》1986,94(2):171-178
Summary Levels of benzoic and cinnamic acids in low peat soils, maintained for 25 years under four different cropping systems, were studied in field experiments. The soil samples were obtained from four horizons of thirteen selected profiles. Seven phenolic acids were identified by high performance liquid chromatographic (HPLC) techniques and their amounts were determined quantitatively. The concentration of phenolic acids in the soils depended on the cropping system and the depth of the soil profiles. Permanent grassland had the highest yield of phenolic compounds in peat soils. Much smaller amounts were found in the order forest, alternate and field utilization. Thus, phenolic compounds may be useful markers with which to follow the decomposition in peat soils. The content of phenolic acids decreased with the depth of the profiles, but in some cases the 25–30 cm soil layers contained higher amounts of phenols than the 5–10 cm layers. Compared with the surface layers the deeper horizons (55–60 cm and 95–100 cm) were low in phenolic acids.  相似文献   

11.
Dynamic optimization of hybridoma growth in a fed-batch bioreactor   总被引:4,自引:0,他引:4  
This study addressed the problem of maximizing cell mass and monoclonal antibody production from a fed-batch hybridoma cell culture. We hypothesized that inaccuracies in the process model limited the mathematical optimization. On the basis of shaker flask data, we established a simple phenomenological model with cell mass and lactate production as the controlled variables. We then formulated an optimal control algorithm, which calculated the process-model mismatch at each sampling time, updated the model parameters, and re-optimized the substrate concentrations dynamically throughout the time course of the batch. Manipulated variables were feed rates of glucose and glutamine. Dynamic parameter adjustment was done using a fuzzy logic technique, while a heuristic random optimizer (HRO) optimized the feed rates. The parameters selected for updating were specific growth rate and the yield coefficient of lactate from glucose. These were chosen by a sensitivity analysis. The cell mass produced using dynamic optimization was compared to the cell mass produced for an unoptimized case, and for a one-time optimization at the beginning of the batch. Substantial improvements in reactor productivity resulted from dynamic re-optimization and parameter adjustment. We demonstrated first that a single offline optimization of substrate concentration at the start of the batch significantly increased the yield of cell mass by 27% over an unoptimized fermentation. Periodic optimization online increased yield of cell mass per batch by 44% over the single offline optimization. Concomitantly, the yield of monoclonal antibody increased by 31% over the off-line optimization case. For batch and fed-batch processes, this appears to be a suitable arrangement to account for inaccuracies in process models. This suggests that implementation of advanced yet inexpensive techniques can improve performance of fed-batch reactors employed in hybridoma cell culture.  相似文献   

12.

Introduction

Human seminal fluid (hSF) has been suggested as a biofluid suitable to characterise male reproductive organ pathology with metabolomics. However, various enzymatic processes, including phosphorylcholine hydrolysis mediated by prostatic acid phosphatase (PAP), cause unwanted metabolite variation that may complicate metabolomic analysis of fresh hSF samples.

Objectives

To investigate the effects of PAP inhibition with tartrate.

Methods

Using NMR spectroscopy, the kinetics of phosphorylcholine to choline hydrolysis was characterized in hSF samples from three subjects at different temperatures and tartrate concentrations. Principal components analysis was used to characterise the effects of tartrate and temperature on personal differences in metabolite profiles. Potential effects of tartrate on RNA quantification were also determined.

Results

Metabolite profiles and the kinetics of phosphorylcholine degradation are reproducible in independent samples from three ostensibly normal subjects. Increasing concentrations of tartrate and refrigerated sample storage (279 K) resulted in greatly reduced reaction rates as judged by apparent rate constants. Multivariate statistical analysis showed that personal differences in metabolite profiles are not overshadowed by tartrate addition, which stabilises phosphorylcholine and choline concentrations. The tartrate signal also served as an internal concentration standard in the samples, allowing the determination of absolute metabolite concentrations in hSF. Furthermore, the presence of tartrate did not affect RNA expression analysis by qPCR.

Conclusion

Based on these results we recommend as standard protocol for the collection of hSF samples, that 10 mM tartrate are added immediately to samples, followed by sample storage/handling at 277 K until clinical processing within 6 h to remove/inactivate enzymes and isolate metabolite supernatant and other cellular fractions.
  相似文献   

13.
Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:656–667, 2015  相似文献   

14.
Enhancement of calcineurin inhibitor nephrotoxicity by sirolimus (SRL) is limiting the clinical use of this drug combination. We compared the dose-dependent effects of the structurally related everolimus (EVL) and sirolimus (SRL) alone, and in combination with cyclosporine (CsA), on the rat kidney. Lewis rats were treated by oral gavage for 28 days using a checkerboard dosing format (0, 3.0, 6.0 and 10.0 CsA and 0, 0.5, 1.5 and 3.0 mg/kg/day SRL or EVL, n = 4/dose combination). After 28 days, oxidative stress, energy charge, kidney histologies, glomerular filtration rates, and concentrations of the immunosuppressants were measured along with 1H-magnetic resonance spectroscopy (MRS) and gas chromatography- mass spectrometry profiles of cellular metabolites in urine. The combination of CsA with SRL led to higher urinary glucose concentrations and decreased levels of urinary Krebs cycle metabolites when compared to controls, suggesting that CsA+SRL negatively impacted proximal tubule metabolism. Unsupervised principal component analysis of MRS spectra distinguished unique urine metabolite patterns of rats treated with CsA+SRL from those treated with CsA+EVL and the controls. SRL, but not EVL blood concentrations were inversely correlated with urine Krebs cycle metabolite concentrations. Interestingly, the higher the EVL concentration, the closer urine metabolite patterns resembled those of controls, while in contrast, the combination of the highest doses of CsA+SRL showed the most significant differences in metabolite patterns. Surprisingly in this rat model, EVL and SRL in combination with CsA had different effects on kidney biochemistry, suggesting that further exploration of EVL in combination with low dose calcineurin inhibitors may be of potential benefit.  相似文献   

15.
A method is described whereby mutants having a directed increased yield of a metabolite may readily be isolated. A culture of bacterial cells is exposed to a gradient concentration of an antimetabolite that is inhibitory to the growth of the organism and mutants are isolated which survive because of an increased yield of the metabolite. This increased yield may be several times that formed by the parent culture. Techniques and results for increasing the yields of pyridoxine, nicotinic acid and thiamine are described.  相似文献   

16.
Mass spectrometry (MS)-based metabolomic methods enable simultaneous profiling of hundreds of salivary metabolites, and may be useful to diagnose a wide range of diseases using saliva. However, few studies have evaluated the effects of physiological or environmental factors on salivary metabolomic profiles. Therefore, we used capillary electrophoresis-MS to analyze saliva metabolite profiles in 155 subjects with reasonable oral hygiene, and examined the effects of physiological and environmental factors on the metabolite profiles. Overall, 257 metabolites were identified and quantified. The global profiles and individual metabolites were evaluated by principle component analysis and univariate tests, respectively. Collection method, collection time, sex, body mass index, and smoking affected the global metabolite profiles. However, age also might contribute to the bias in sex and collection time. The profiles were relatively unaffected by other parameters, such as alcohol consumption and smoking, tooth brushing, or the use of medications or nutritional supplements. Temporomandibular joint disorders had relatively greater effects on salivary metabolites than other dental abnormalities (e.g., stomatitis, tooth alignment, and dental caries). These findings provide further insight into the diversity and stability of salivary metabolomic profiles, as well as the generalizability of disease-specific biomarkers.  相似文献   

17.
18.
19.
The global metabolite profiles of endogenous compounds excreted in urine by male Wistar-derived and Zucker (fa/fa) obese rats were investigated from 4 to 20 weeks of age using both 1H NMR spectroscopy and HPLC-TOF/MS with electrospray ionisation (ESI). Multivariate data analysis was then performed on the resulting data which showed that the composition of the samples changed with age, enabling age-related metabolic trajectories to be constructed. At 4 weeks it was possible to observe differences between the urinary metabolite profiles from the two strains, with the difference becoming more pronounced over time resulting in a marked divergence in their metabolic trajectories at 8-10 weeks. The changes in metabolite profiles detected using 1H NMR spectroscopy included increased protein and glucose combined with reduced taurine concentrations in the urine of the Zucker animals compared to the Wistar-derived strain. In the case of HPLC-MS a number of ions were found to be present at increased levels in the urine of 20 week old Zucker rats compared to Wistar-derived rats including m/z 71.0204, 111.0054, 115.0019, 133.0167 and 149.0454 (negative ion ESI) and m/z 97.0764 and 162.1147 (positive ion ESI). Conversely, ions m/z 101.026 and 173.085 (negative ion ESI) and m/z 187.144 and 215.103 (positive ion ESI) were present in decreased amounts in urine from Zucker compared to Wistar-derived rats. Metabolite identities proposed for these ions include fumarate, maleate, furoic acid, ribose, suberic acid, carnitine and pyrimidine nucleoside. The utility of applying metabonomics to understanding disease processes and the biological relevance of some of the findings are discussed.  相似文献   

20.
Suberin is a specific cell wall-associated biopolymer characterized by the deposition of both a poly(phenolic) domain (SPPD) associated with the cell wall, and a poly(aliphatic) domain (SPAD) thought to be deposited between the cell wall and plasma membrane. In planta, suberin functions to prevent plants from desiccation and pathogen attack. Although the chemical identity of the monomeric components of the SPPD and SPAD are well known, their concerted biosynthesis and assembly into the suberin macromolecule is poorly understood. To expand our knowledge of suberin biosynthesis, a GC/MS-based metabolite profiling study was conducted, using wound healing potato (Solanum tuberosum L.) tubers as a model system. A time series of both non-polar and polar metabolite profiles were created, yielding a broad-based, dynamic picture of wound-induced metabolism, including suberization. Principal component analysis revealed a separation of metabolite profiles according to different suberization stages, with clear temporal differences emerging in the non-polar and polar profiles. In the non-polar profiles, suberin-associated aliphatics contributed the most to cluster formation, while a broader range of metabolites (including organic acids, sugars, amino acids and phenylpropanoids) influenced cluster formation amongst polar profiles. Pair-wise correlation analysis revealed strong correlations between known suberin-associated compounds, as well as between suberin-associated compounds and several un-identified metabolites in the profiles. These data may help to identify additional, as yet unknown metabolites associated with suberization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号