首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulsed electromagnetic fields (PEMFs) have been shown to be a noninvasive physical stimulant for bone fracture healing. However, PEMF stimulation requires a relatively long period of time and its mechanism of action has not yet been fully clarified. Recently, the mammalian target of rapamycin (mTOR) pathway has been shown to be involved in bone formation. This study aimed to investigate the effects of PEMFs on osteoblastic MC3T3‐E1 cells by examining various cellular responses including changes in the mTOR pathway. Continuous PEMF stimulation induced a transient phosphorylation of the mTOR pathway, whereas intermittent PEMF stimulation (1 cycle of 10 min stimulation followed by 20 min of stimulation pause) revitalized the reduced phosphorylation. Moreover, PEMF stimulation stimulated cell proliferation (bromodeoxyuridine incorporation) rather than differentiation (alkaline phosphatase activity), with a more notable effect in the intermittently stimulated cells. These results suggest that intermittent PEMF stimulation may be effective in promoting bone fracture healing by accelerating cell proliferation, and in shortening stimulation time. Bioelectromagnetics. 2019;40:412–421. © 2019 Bioelectromagnetics Society.  相似文献   

2.
3.
Introduction of membrane‐impermeant substances into living cells is the key method to understand contemporary cellular processes by investigating cellular responses and phenotypes. Here, we performed gold ion beam exposure into live cells by using the focused ion beam implantation method, which was originally developed to precisely control semiconductor device performances. We evaluated the viability of the gold‐irradiated cells by measuring the concentration of adenosine triphosphate (ATP), which is an intracellular energy source produced in the mitochondrial membrane. The viability of the irradiated cells was found to be 20% higher than that of the unirradiated control cells. The atoms might promote the energy generating processes within the mitochondrion. Our results suggest that the viability of living cells can be modulated by accurately controlling the dopant atom numbers. Our technique may be considered as a potential tool in life and medical sciences to quantitatively elucidate the dose‐dependent effects of dopants. Biotechnol. Bioeng. 2011; 108:222–225. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Aim: This article investigated the lethal effect and morphological changes on Staphylococcus aureus strains ATCC 25923 and ATCC 6538P produced by chitosan‐Ag (I) films as observed by electron microscopy. Methods and Results: The antimicrobial activity of films against staphylococci was determined using the broth dilution method and agar diffusion test. Killing curves, transmission and scanning electron microscopy (TEM and SEM) techniques were employed to evaluate the bacterial death and morphological changes in bacterial cells after exposure to chitosan‐Ag (I) films. Films affected the cell structure of Staph. aureus, causing elongation of cells, disaggregation of grape‐like cluster, contraction of bacterial cytoplasm, thickening of cell wall, increase in cell wall roughness, cell disruption with loss of intracellular material, filamentation and bacteriolysis, as seen in the micrographs following 3, 6, 12 and 16 h of incubation. Conclusions: Obtained images clearly show that chitosan‐Ag (I) films have a notable antistaphylococcal activity. Significance and Impact of the Study: Information from this study can be employed in guiding future strategies to improve the design of materials for the food industry packaging.  相似文献   

5.
Osteoblast cells synthesize collagen‐rich ECM (extracellular matrix) in response to various environmental cues, but little is known about ECM‐dependent variations in phosphorylation patterns. Using MC3T3 E1 osteoblast‐like cells and mouse whole‐genome microarrays, we investigated molecular signalling affected by collagen‐based ECMs. A genome‐wide expression analysis revealed that cells grown in the 3D collagen matrix partially suppressed the genes associated with cell adhesion and cell cycling. Western analysis demonstrated that the expression of the active (phosphorylated) form of p130Cas, FAK (focal adhesion kinase) and ERK1/2 (extracellular‐signal‐regulated protein kinase 1/2) was reduced in cells grown in the 3D matrix. Conversely, phosphorylation of p38 MAPK (p38 mitogen‐activated protein kinase) was elevated in the 3D matrix, and its up‐regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein. Although multiple characteristics such as surface topography, chemical composition and mechanical properties differ in the preparations of our collagen‐rich milieu, our observations support the notion that geometrical alterations in ECM environments can alter the phosphorylation pattern of p130Cas, FAK, ERK1/2 and p38 MAPK and lead to a differential developmental fate.  相似文献   

6.
Depletion of T‐cell‐dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti‐cancer chemotherapy and/or radiotherapy. In general, T‐cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G0/G1 phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary‐type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H‐Ras, phosphorylated extracellular signal‐regulated kinase 1/2 (p‐ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c‐myc. These data, and the observation that the proliferation‐enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras‐ERK/mitogen‐activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. J. Cell. Biochem. 107: 494–503, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
Osteoblasts in culture can differentiate into mature mineralizing osteoblasts when stimulated with osteogenic agents. Clinical trials and in vivo animal studies suggest that specific polyunsaturated fatty acids (PUFAs) may benefit bone health. The aim of this study was to investigate whether arachidonic acid (AA) and docosahexaenoic acid (DHA) affect osteogenesis in osteoblasts and the transdifferentiation into adipocytes. Results from this study show that long‐term exposure to AA inhibited alkaline phosphatase (ALP) activity in these cells, which might be prostaglandin E2 (PGE2)‐mediated. DHA exposure also inhibited ALP activity which was evident after both short‐ and long‐term exposures. The mechanism whereby DHA inhibits ALP activity is not clear and needs to be investigated. Although long‐term exposure to PUFAs inhibited ALP activity, the mineralizing properties of these cells were not compromised. Furthermore, PUFA exposure did not induce adipocyte‐like features in these cells as evidenced by the lack of cytoplasmic triacylglycerol accummulation. More research is required to elucidate the cellular mechanisms of action of PUFAs on bone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Three‐dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold‐based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte‐like cells using embryoid body protocol in the two‐dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte‐like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or ?EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate‐based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene‐expression patterns, we can conclude that alginate‐based 3D coculture system provided a highly efficient protocol for oocyte‐like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte‐like cell differentiation.  相似文献   

11.
Hormone replacement therapy (HRT) for post‐menopausal symptoms in diabetes is associated with increased risk of coronary heart disease and stroke. Therefore, there is a need for new HRT with no adverse effects on diabetic post‐menopausal women. We developed peptides as potential estrogen mimetic compounds and now we evaluated the effects of the most efficacious peptide; hexapeptide estrogen‐mimetic peptide 1 (EMP‐1) (VSWFFE) in comparison to estrogen (E2) and peptides with weak activity A44 (KAWFFE) and A45 (KRAFFE) on modulation of cell proliferation of vascular smooth muscle cells (VSMC) growing in normal (ng) or high glucose (hg) concentrations. In ng EMP‐1‐like E2 inhibited cell proliferation at high concentration, and stimulated at low concentration. EMP‐1 did not affect E2 stimulation of DNA, but inhibited E2 inhibition of cell proliferation at high concentration. All effects by the combination of EMP‐1 and E2 were abolished at hg. A44‐stimulated cell proliferation at all concentrations and A45 had no effect. When A44 was co‐incubated with E2 at both concentrations, DNA synthesis was stimulated, but abolished at hg. A45 abolished E2 stimulation and inhibition of cell proliferation at both glucose concentrations. All peptides tested except A45‐stimulated CK‐specific activity at both glucose concentrations. In hg A44 stimulation of DNA was unaffected as well as its inhibition by EMP‐1. EMP‐1 and A44 similar to E2‐stimulated MAPK activity in ng or hg, suggesting similar mechanism of action. The results presented here suggest that EMP‐1 provided it acts similarly in vivo can replace E2 for treatment of post‐menopausal women in hyperglycemia due to diabetes. J. Cell. Biochem. 110: 1142–1146, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling are the key regulators for germ cell and meiosis induction, respectively. Gonadal tissue also provides an appropriate microenvironment for oocyte differentiation in vivo. The current study aimed to determine whether mimicking in vivo niche is more efficient for oocyte differentiation from embryonic stem (ES) cells. Here, differentiation of mouse ES cells toward oocyte‐like cells using embryoid body (EB) and monolayer protocols was induced in the presence (+BMP4) or absence (‐BMP4) of BMP4. On day 5, each group was co‐cultured with ovarian somatic cells in the presence or absence of RA (+RA or –RA) for an additional 14 days. Our results showed a significant increase in expression of meiotic markers in the +BMP4 condition in EB differentiation protocol. Further differentiation with ovarian somatic cells led to a subpopulation of oocyte‐like cell formation. Compared to the controls, the +RA condition resulted in a significant elevation of the meiotic gene expression in contrast to Oct4 that significantly decreased in both protocols. In the cells pre‐treated with BMP4 and then exposed to RA in the monolayer differentiation protocol, the gene expression levels of germ cell, Mvh, and maturation markers, Cx37, Zp2, and Gdf9, were also upregulated significantly. Therefore, it can be concluded that +BMP4 and +RA along with ovarian somatic cell co‐culture improved the rate of in vitro oocyte differentiation.  相似文献   

14.
Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony‐formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real‐time RT‐PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP‐ribose polymerase) and caspase‐3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre‐clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention.  相似文献   

15.
16.
17.
S100A6 (calcyclin) is a calcium binding protein with two EF‐hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non‐transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by β‐galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function. J. Cell. Biochem. 109: 576–584, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Mesenchymal stroma/stem‐like cells (MSCs) have antitumour activity, and MSC‐derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC‐derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA‐GARP in MSC cells. Exosomes were isolated from MSC and siGARP‐MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP‐MSC exosomes compared with that of MSC exosomes. We found that siGARP‐MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK‐8, colony formation, wound‐healing and Transwell invasion assays. Furthermore, siGARP‐MSC exosomes impeded IL‐6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT‐qPCR. In conclusion, MSC‐derived exosomes targeting GARP are a potential strategy for cancer therapy.  相似文献   

19.
20.
Reactive oxygen species (ROS) generated by a variety of endogenous factors and roles in embryonic stem (ES) cells has yet to be identified. Thus, we examined role of arachidonic acid (AA) in H2O2‐indued proliferation of mouse ES cells and its related signaling molecules. AA release was maximally increased in response to 10?4 M H2O2 for 1 h. In addition, H2O2 increased intracellular Ca2+ concentration ([Ca2+]i) and the phosphorylation of protein kinase C (PKC), p44/42, p38 mitogen‐activated protein kinase (MAPK), and JNK/SAPK. Moreover, H2O2 induced an increase in the phosphorylation of epidermal growth factor receptor (EGFR), which was blocked by the inhibition of p44/42 or p38 MAPKs. The inhibition of each signal molecule with specific inhibitors blocked H2O2‐induced cytosolic phospholipase A2 (cPLA2) activation and AA release. H2O2 increased NF‐κB phosphorylation to induce an increase in the levels of cyclooxygenase (COX)‐2 proteins. Subsequently, H2O2 stimulated PGE2 synthesis, which was reduced by the inhibition of NF‐κB activation. Moreover, each H2O2 or PGE2 increased DNA synthesis and the number of cells. However, H2O2‐induced increase in DNA synthesis was inhibited by the suppression of cPLA2 pathway. In conclusion, H2O2 increased AA release and PGE2 production by the upregulation of cPLA2 and COX‐2 via Ca2+/PKC/MAPKs and EGFR transactivation, subsequently proliferation of mouse ES cells. J. Cell. Biochem. 106: 787–797, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号