首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.  相似文献   

2.
Satisfactory therapeutic strategies for septic shock are still missing. Previously we found elevated levels of Wnt5A in patients with severe sepsis and septic shock. Wnt5A is released by activated macrophages but knowledge of its effects in the vascular system remains scant. Here we investigate the response of human coronary artery endothelial cells (HCAEC) to Wnt5A. We used a genome-wide differential expression approach to define novel targets regulated by Wnt5A. Gene ontology analysis of expression profiles revealed clusters of genes involved in actin cytoskeleton remodeling as the predominant targets of Wnt5A. Wnt5A targeted Rho-associated protein serine/threonine kinase (ROCK), leading to phosphorylation of LIM kinase-2 (LIMK2) and inactivation of the actin depolymerization factor cofilin-1 (CFL1). Functional experiments recording cytoskeletal rearrangements in living cells showed that Wnt5A enhanced stress fiber formation as a consequence of reduced actin depolymerization. The antagonist Wnt inhibitory factor 1 (WIF1) that specifically interferes with the WIF domain of Ryk receptors prevented actin polymerization. Wnt5A disrupted β-catenin and VE-cadherin adherens junctions forming inter-endothelial gaps. Functional experiments targeting the endothelial monolayer integrity and live recording of trans-endothelial resistance revealed enhanced permeability of Wnt5A-treated HCAEC. Ryk silencing completely prevented Wnt5A-induced endothelial hyperpermeability. Wnt5A decreased wound healing capacity of HCAEC monolayers; this was restored by the ROCK inhibitor Y-27632. Here we show that Wnt5A acts on the vascular endothelium causing enhanced permeability through Ryk interaction and downstream ROCK/LIMK2/CFL1 signaling. Wnt5A/Ryk signaling might provide novel therapeutic strategies to prevent capillary leakage in systemic inflammation and septic shock.  相似文献   

3.
4.
5.
G protein‐coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα‐negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand‐independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co‐expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP‐induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c‐fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP‐2) and MMP‐9. These findings establish that GPER ligand‐independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
Wnt5a is a representative ligand that activates the Wnt/β‐catenin‐independent pathway, resulting in the regulation of cell adhesion, migration, and polarity, but its molecular mechanism is poorly understood. This report shows that Dishevelled (Dvl) binds to adenomatous polyposis coli (APC) gene product, and this binding is enhanced by Wnt5a. Dvl was involved in the stabilization of the plus end dynamics of microtubules as well as APC. Frizzled2 (Fz2) was present with Wnt5a at the leading edge of migrating cells and formed a complex with APC through Dvl. Fz2 also interacted with integrins at the leading edge, and Dvl and APC associated with and activated focal adhesion kinase and paxillin. The binding of APC to Dvl enhanced the localization of paxillin to the leading edge and was involved in Wnt5a‐dependent focal adhesion turnover. Furthermore, this new Wnt5a signalling pathway was important for the epithelial morphogenesis in the three‐dimensional culture. These results suggest that the functional and physical interaction of Dvl and APC is involved in Wnt5a/Fz2‐dependent focal adhesion dynamics during cell migration and epithelial morphogenesis.  相似文献   

9.
Apoptosis induced by progesterone in human ovarian cancer cell line SNU-840   总被引:4,自引:0,他引:4  
Progesterone has been used as an ingredient of anticancer drug for patients with ovarian carcinoma. However, the mechanism of anticancer effects by progesterone has not been understood. In this study, the effects of progesterone on ovarian cancer cells, SNU-840, were investigated. After the incubation with progesterone, the viability of the cells was evaluated by MTT assay. As a result, 45% of the cells were viable after 48 h of incubation with 100 microM progesterone. In addition, [(3)H]thymidine incorporation assay showed that the proliferation of the cells was completely inhibited by progesterone after 48 h of incubation at 100 microM concentration. Colorimetric TUNEL assay revealed the fragmentation of the chromosomal DNA, suggesting that the process of the cell death was apoptosis. The level of the p53 mRNA was determined by northern blotting assay, since many apoptosis processes are mediated by up-regulation of the p53 expression. The level of the p53 mRNA reached its maximum at 12 h and decreased after 24 h of incubation with progesterone. In conclusion, progesterone inhibits the proliferation and elicits apoptosis of SNU-840 cells. Also, it up-regulates the p53 mRNA transiently.  相似文献   

10.
11.
In this study, we investigated the effects and molecular mechanisms of 2‐phenylbenzimidazole‐5‐sulphonic acid (PBSA), an ultraviolet B protecting agent used in sunscreen lotions and moisturizers, on ovarian cancer cell responses and tumour angiogenesis. PBSA treatment markedly blocked mitogen‐induced invasion through down‐regulation of matrix metalloproteinase (MMP) expression and activity in ovarian cancer SKOV‐3 cells. In addition, PBSA inhibited mitogen‐induced cell proliferation by suppression of cyclin‐dependent kinases (Cdks), but not cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. These anti‐cancer activities of PBSA in ovarian cancer cell invasion and proliferation were mediated by the inhibition of mitogen‐activated protein kinase kinase 3/6‐p38 mitogen‐activated protein kinase (MKK3/6‐p38MAPK) activity and subsequent down‐regulation of MMP‐2, MMP‐9, Cdk4, Cdk2 and integrin β1, as evidenced by treatment with p38MAPK inhibitor SB203580. Furthermore, PBSA suppressed the expression and secretion of vascular endothelial growth factor in SKOV‐3 cells, leading to inhibition of capillary‐like tubular structures in vitro and angiogenic sprouting ex vivo. Taken together, our results demonstrate the pharmacological effects and molecular targets of PBSA on modulating ovarian cancer cell responses and tumour angiogenesis, and suggest further evaluation and development of PBSA as a promising chemotherapeutic agent for the treatment of ovarian cancer.  相似文献   

12.
13.
14.
15.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

16.
Ever reports showed that PCNP is associated with human cancers including neuroblastoma and lung cancer. However, the role and underlying molecular mechanism of PCNP in ovarian cancer have not been plenty elucidated. Herein, we first investigated the expression of PCNP in ovarian cancer tissues and cells, the effects of PCNP in ovarian cancer proliferation, apoptosis, migration and invasion, and determined the molecular mechanism of PCNP in ovarian cancer progression. The results indicated that PCNP was significantly overexpressed in human ovarian cancer tissues and cells, and related to poor prognosis in ovarian cancer patients. In addition, we also detected that PCNP promoted ovarian cancer cells growth, migration and invasion, as well as inhibited ovarian cancer cells apoptosis. Mechanistically, PCNP binding to β‐catenin promoted β‐catenin nuclear translocation and further activated Wnt/β‐catenin signalling pathway. Moreover, PCNP regulated the expression of genes involved in EMT and further triggered EMT occurrence. Conclusionally, PCNP may promote ovarian cancer progression through activating Wnt/β‐catenin signalling pathway and EMT, acting as a novel and promising target for treating ovarian cancer.  相似文献   

17.
18.
Large‐scale molecular annotation of epithelial ovarian cancer (EOC) indicates remarkable heterogeneity in the etiology of that disease. This diversity presents a significant obstacle against intervention target discovery. However, inactivation of miRNA biogenesis is commonly associated with advanced disease. Thus, restoration of miRNA activity may represent a common vulnerability among diverse EOC oncogenotypes. To test this, we employed genome‐scale, gain‐of‐function, miRNA mimic toxicity screens in a large, diverse spectrum of EOC cell lines. We found that all cell lines responded to at least some miRNA mimics, but that the nature of the miRNA mimics provoking a response was highly selective within the panel. These selective toxicity profiles were leveraged to define modes of action and molecular response indicators for miRNA mimics with tumor‐suppressive characteristics in vivo. A mechanistic principle emerging from this analysis was sensitivity of EOC to miRNA‐mediated release of cell fate specification programs, loss of which may be a prerequisite for development of this disease.  相似文献   

19.
Dopamine and cyclic‐AMP activated phosphoprotein Mr32kDa (DARPP‐32) is a central signalling protein in neurotransmission. Following DARPP‐32 phosphorylation by protein kinase A (PKA), DARPP‐32 becomes a potent protein phosphatase 1 (PP1) inhibitor. DARPP‐32 can itself inhibit PKA following DARPP‐32 phosphorylation by cyclin‐dependent kinase 5 (Cdk5). Increasing evidence indicates a role for DARPP‐32 and its associated signalling pathways in cancer; however, its role in ovarian cancer remains unclear. Using immunohistochemistry, expression of DARPP‐32, PP1 and Cdk5 was determined in a large cohort of primary tumours from ovarian cancer patients (n = 428, 445 and 434 respectively) to evaluate associations between clinical outcome and clinicopathological criteria. Low cytoplasmic and nuclear DARPP‐32 expression was associated with shorter patient overall survival and progression‐free survival (P = .001, .001, .004 and .037 respectively). Low nuclear and cytoplasmic DARPP‐32 expression remained significantly associated with overall survival in multivariate Cox regression (P = .045, hazard ratio (HR) = 0.734, 95% confidence interval (CI) = 0.542‐0.993 and P = .001, HR = 0.494, 95% CI = 0.325‐0.749, respectively). High cytoplasmic and nuclear PP1 expression was associated with shorter patient overall survival and high cytoplasmic PP1 expression with shorter progression‐free survival (P = .005, .033, and .037, respectively). High Cdk5 expression was associated with shorter progression‐free survival (P = .006). These data suggest a role for DARPP‐32 and associated signalling kinases as prognostic markers with clinical utility in ovarian cancer.  相似文献   

20.
Early detection of resistance to platinum-based therapy is critical for improving the treatment of ovarian cancers. We have previously found that increased expression of annexin A3 is a mechanism for platinum resistance in ovarian cancer cells. Here we demonstrate that annexin A3 can be detected in the culture medium of ovarian cancer cells, particularly these cells that express high levels of annexin A3. Levels of annexin A3 were then determined in sera from ovarian cancer patients using an enzyme-linked immunosorbent assay. Compared with those from normal donors, sera from ovarian cancer patients contain significantly higher levels of annexin A3. Furthermore, serum levels of annexin A3 were significantly higher in platinum-resistant patients than in platinum-sensitive patients. To gain insight into the mechanism of secretion, the ovarian cancer cell lines were examined using both transmission electron microscopy and immunoelectron microscopy. Compared with parent cells, there are significantly more vesicles in the cytoplasm of ovarian cancer cells that express high levels of annexin A3, and at least some vesicles are annexin A3-positive. Moreover, some vesicles appear to be fused with the cell membrane, suggesting that annexin A3 secretion may be associated with exocytosis and the release of exosomes. This is supported by our observation that ovarian cancer cells expressing higher levels of annexin A3 released increased numbers of exosomes. Furthermore, annexin A3 can be detected in exosomes released from cisplatin-resistant cells (SKOV3/Cis) by immunoblotting and immunoelectron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号