首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
An efficient protein‐folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally‐induced aggregate of fibroblast growth factor‐1 (FGF‐1), a small globular protein, by solid‐state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF‐1 also indicate the presence of unstructured regions that exhibit hydration‐dependent dynamics and suggest that unstructured regions of aggregated FGF‐1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF‐1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria – the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.  相似文献   

4.
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.  相似文献   

5.
6.
Fibroblast growth factor‐6 (FGF‐6) is known to be the key ligand for fibroblast growth factor receptor 4 (FGFR4) during muscle regeneration but its role in bone has yet to be verified. FGFR signaling is known to be important in the initiation and regulation of osteogenesis, so in this study the actions of FGF‐6 on human osteoblasts and osteoclasts were investigated. Human primary osteoblasts (hOB) were used to study the effect of FGF‐6 on proliferation (by ATP quantification), signal transduction (by ERK and AKT phosphorylation), differentiation (by alkaline phosphatase activity, APA), and mineralization (by calcein staining). To study FGF‐6 activity on osteoclast differentiation, human bone marrow cells were used and tartrate‐resistant acid phosphatase (TRAP) multinucleated cells together with actin filaments arrangements were quantified. Human primary mature osteoclasts were used to evaluate the effect of FGF‐6 on osteoclast reabsorbing activity by reabsorbed pit measurements. FGF‐6 >10−9 M as FGF‐2 10−7 M induced hOB proliferation mediated by pERK together with a reduction in APA and reduced mineralization of the treated cells. Moreover FGF‐6 increased the formation of TRAP‐positive multinucleated cells in a dose‐dependent manner (maximal effect at 10−8 M). FGF‐6‐treated cells showed also a greater percentage of cells that formed typical osteoclast sealing zones. Mature osteoclasts cultured on dentine slice increased the area of reabsorption with a maximal effect of FGF‐6 at 10−12 M. FGF‐6 may be considered a regulator of bone metabolism as shown by its activity on both osteoblasts and osteoclasts. J. Cell. Physiol. 225: 466–471, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Differently from most transformed cells, cutaneous melanoma expresses the pleiotropic factor thrombospondin‐1 (TSP‐1). Herein, we show that TSP‐1 (RNA and protein), undetectable in four cultures of melanocytes and a RGP melanoma, was variously present in 13 cell lines from advanced melanomas or metastases. Moreover, microarray analysis of 55 human lesions showed higher TSP‐1 expression in primary melanomas and metastases than in common and dysplastic nevi. In a functional enrichment analysis, the expression of TSP‐1 correlated with motility‐related genes. Accordingly, TSP‐1 production was associated with melanoma cell motility in vitro and lung colonization potential in vivo. VEGF/VEGFR‐1 and FGF‐2, involved in melanoma progression, regulated TSP‐1 production. These factors were coexpressed with TSP‐1 and correlated negatively with Slug (SNAI2), a cell migration master gene implicated in melanoma metastasis. We conclude that TSP‐1 cooperates with FGF‐2 and VEGF/VEGFR‐1 in determining melanoma invasion and metastasis, as part of a Slug‐independent motility program.  相似文献   

8.
9.
10.
Objectives: Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor‐2 (FGF‐2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF‐2 to fractone‐HS is implicated in the mechanism leading to cell proliferation in the SVZa. Materials and methods: Heparitinase‐1 was intracerebroventricularly injected with FGF‐2 to N‐desulfate HS proteoglycans and determine whether the loss of HS and of FGF‐2 binding to fractones modifies FGF‐2 effect on cell proliferation. We also examined in vivo the binding of Alexa‐Fluor‐FGF‐2 in relationship with the location of HS immunoreactivity in the SVZa. Results: Heparatinase‐1 drastically reduced the stimulatory effect of FGF‐2 on cell proliferation in the SVZa. Alexa‐Fluor‐FGF‐2 binding was strictly co‐localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. Conclusions: Our results demonstrate that FGF‐2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF‐2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.  相似文献   

11.
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin‐binding growth factor basic fibroblast growth factor (FGF‐2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF‐2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF‐2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF‐2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c‐fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF‐2, and augments and sustains FGF‐2 mediated increases in c‐fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF‐2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF‐2. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 261–277, 2003  相似文献   

12.
Parathyroid hormone (PTH) increases fibroblast growth factor receptor‐1 (FGFR1) and fibroblast growth factor‐2 (FGF‐2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2?/? mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2?/? osteoblasts. PTH increased Runx‐2 protein expression in Fgf2+/+ but not Fgf2?/? osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx‐2 only in Fgf2+/+ osteoblasts. PTH and FGF‐2 regulate Runx‐2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho‐CREB within 15 min that was sustained for 24 h in Fgf2+/+ but had no effect in Fgf2?/? osteoblasts. Silencing of FGF‐2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx‐2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1‐cdk4/6 protein in Fgf2+/+ but not Fgf2?/? osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2?/? osteoblasts. PTH increased Bcl‐2/Bax protein ratio in Fgf2+/+ but not Fgf2?/? osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2?/? osteoblasts. These data suggest that endogenous FGF‐2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2?/? mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF‐2 expression. J. Cell. Physiol. 219: 143–151, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
14.
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.  相似文献   

15.
Fibroblast growth factor 8 (FGF‐8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF‐8b on proliferation of PC‐3 prostate cancer cells and growth of PC‐3 tumors, and to identify FGF‐8b‐associated molecular targets. Expression of ectopic FGF‐8b in PC‐3 cells caused a 1.5‐fold increase in cell proliferation in vitro and a four‐ to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF‐8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT‐qPCR of FGF‐8b mRNA. Microarray analyses revealed significantly altered, up‐ and downregulated, genes in PC‐3 cell cultures (169 genes) and in orthotopic PC‐3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell‐to‐cell signaling and energy production, and the downregulated genes associated with differentiation (DKK‐1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT‐qPCR. In conclusion, our results demonstrate that FGF‐8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF‐8b actions on prostate cancer progression and metastasis. J. Cell. Biochem. 107: 769–784, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Non‐alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle, while exercise is beneficial for NAFLD. Dysregulated microRNAs (miRs) control the pathogenesis of NAFLD. However, whether exercise could prevent NAFLD via targeting microRNA is unknown. In this study, normal or high‐fat diet (HF) mice were either subjected to a 16‐week running program or kept sedentary. Exercise attenuated liver steatosis in HF mice. MicroRNA array and qRT‐PCR demonstrated that miR‐212 was overexpressed in HF liver, while reduced by exercise. Next, we investigated the role of miR‐212 in lipogenesis using HepG2 cells with/without long‐chain fatty acid treatment (±FFA). FFA increased miR‐212 in HepG2 cells. Moreover, miR‐212 promoted lipogenesis in HepG2 cells (±FFA). Fibroblast growth factor (FGF)‐21, a key regulator for lipid metabolism, was negatively regulated by miR‐212 at protein level in HepG2 cells. Meanwhile, FFA downregulated FGF‐21 both at mRNA and protein levels in HepG2 cells. Also, FGF‐21 protein level was reduced in HF liver, while reversed by exercise in vivo. Furthermore, siRNA‐FGF‐21 abolished the lipogenesis‐reducing effect of miR‐212 inhibitor in HepG2 cells (±FFA), validating FGF‐21 as a target gene of miR‐212. These data link the benefit of exercise and miR‐212 downregulation in preventing NAFLD via targeting FGF‐21.  相似文献   

18.
The aim of the present study is to evaluate the proliferation‐ and migration‐enhancing effects of ginseng and its component, ginsenoside (Rg1) on RSC96 Schwann cells. We investigated the molecular signaling pathways, which include: (1) survival signaling, IGFs‐IGFIR‐Akt‐Bcl2 and proliferative signaling, cell cycle factors and mitogen‐activated protein kinase (MAPK) pathways, (2) migrating and anti‐scar signaling, FGF‐2‐uPA‐MMPs.We treated RSC96 cells with different concentrations (100, 200, 300, 400, 500 µg ml?1) of ginseng and its constituent, Rg1 (5, 10, 15, 20, 25 µg ml?1). We observed a proliferative effect in a dose‐dependent manner by PCNA western blotting assay, MTT assay, and wound healing test. Furthermore, we also found in the results of western blotting assay, ginseng and Rg1 enhance protein expression of IGF‐I pathway regulators, cell cycle controlling proteins, and MAPK signaling pathways to promote the cell proliferation. In addition, ginseng and Rg1 also stimulated the FGF‐2‐uPA‐MMP 9 migrating pathway to enhance the migration of RSC96 Schwann cells. Using MAPK chemical inhibitors, U0126, SB203580, and SP600125, the proliferative effects of ginseng and Rg1 on RSC96 cells were identified to be MAPK signaling‐dependent. On the basis of the results, applying appropriate doses of ginseng and Rg1 with biomedical materials would be a potential approach for enhancing neuron regeneration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Immunotherapy mediated by recombinant antibodies is an effective therapeutic strategy for a variety of cancers. In a previous study, we demonstrated that the fibroblast growth factor 1 (FGF‐1)‐specific recombinant antibody scFv1C9 arrests the cell cycle at the G0/G1 transition by blocking the intracrine FGF‐1 pathway in breast cancer cells. Here, we further show that the overexpression of scFv1C9 in MCF‐7 and MDA‐MB‐231 breast cancer cells by lentiviral infection resulted in decreased tumourigenicity, tumour growth and lung metastasis through FGF‐1 neutralization. We found that scFv1C9 resulted in the up‐regulation of p21, which in turn inhibited the expression of CDK2 and blocked cell cycle progression. To explore the potential role of scFv1C9 in vivo, we delivered the gene into solid tumours by electroporation, which resulted in significant inhibition of tumour growth. In tumour tissue sections, immunohistochemical staining of the cellular proliferation marker Ki‐67 and the microvessel marker CD31 showed a reduction in the proliferative index and microvessel density, respectively, upon expression of scFv1C9 compared with the appropriate controls. Thus, our data indicate a central role for scFv1C9 in blocking the intracrine pathway of FGF‐1, therefore, scFv1C9 could be developed in an effective therapeutic for breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号