首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Human NK cells are divided into CD56(bright)CD16(-) cells and CD56(dim)CD16(+) cells. We tested the hypothesis that CD56(bright) NK cells can differentiate into CD56(dim) cells by prospectively isolating and culturing each NK subset in vitro and in vivo. Our results show that CD56(bright) cells can differentiate into CD56(dim) both in vitro, in the presence of synovial fibroblasts, and in vivo, upon transfer into NOD-SCID mice. In vitro, this differentiation was inhibited by fibroblast growth factor receptor-1 Ab, demonstrating a role of the CD56 and fibroblast growth factor receptor-1 interaction in this process. Differentiated CD56(dim) cells had reduced IFN-gamma production but increased perforin expression and cytolysis of cell line K562 targets. Flow cytometric fluorescent in situ hybridization demonstrated that CD56(bright) NK cells had longer telomere length compared with CD56(dim) NK cells, implying the former are less mature. Our data support a linear differentiation model of human NK development in which immature CD56(bright) NK cells can differentiate into CD56(dim) cells.  相似文献   

5.
Liang F  Qi RZ  Chang CF 《FEBS letters》2001,506(3):207-210
CD157, a glycosylphosphatidylinositol-anchored protein, has previously been shown to mediate tyrosine phosphorylation of a 130 kDa protein (p130) in several cell lines. In this study, we have identified the p130 protein to be focal adhesion kinase (FAK or pp125(FAK)). FAK undergoes phosphorylation at Tyr-397 and Tyr-861 in intact MCA102 cells stably transfected with CD157 (MCA/CD157). MCA/CD157 cells, which displayed a rounded and compact cell morphology, exhibited a dispersed distribution, in contrast to a more closely associated and elongated spindle cell shape in the vector-transfected cells. MCA/CD157 cells proliferated at a rate 20-25% slower than the control cells. Our results demonstrate, for the first time, that FAK is a downstream signalling molecule of CD157.  相似文献   

6.
7.
Gingival fibroblasts (GFs) that exhibit adult stem cell-like characteristics are known as gingival mesenchymal stem cells (GMSCs). Specific mesenchymal stem cell (MSC) markers have not been identified to distinguish GMSCs from GFs. Recently, the cell surface molecule known as cluster of differentiation (CD) 146 has been identified as a potential MSC surface marker. In the present study, we investigated the differentiation potential of GMSCs based on CD146 expression.GFs were isolated by two techniques: tissue explants or enzymatic digestion. GFs were cultured and expanded then magnetically sorted according to CD146 expression. CD146low and CD146high cells were collected, expanded, and then tested for stem cell markers by flow cytometry as well as osteogenic and chondrogenic differentiation potential. The differentiation of these cells was analyzed after 21 days using histology, immunofluorescence, real-time quantitative PCR (qPCR), and glycosaminoglycan (GAG) to DNA ratio (GAG/DNA) assays. Positive histological staining indicated osteogenic differentiation of all groups regardless of the isolation techniques utilized. However, none of the groups demonstrated chondrogenic differentiation, confirmed by the lack of collagen type II in the extracellular matrix (ECM) of GF aggregates. Our data suggest that identification of gingival stem cells based solely on CD146 is not sufficient to properly carry out translational research using gingival fibroblasts for novel therapeutic methods of treating oral disease.  相似文献   

8.
CD40 is an important signaling and activation antigen found oncertain bone marrow-derived cells. Recently, CD40 has also been shownto be expressed by nonhematopoietic cells, including certain humanfibroblasts, but not others. Little is known about the function of CD40on fibroblasts. The current study investigates the hypothesis that CD40is expressed on orbital fibroblasts and represents a pathway forinteraction between these fibroblasts and CD40 ligand-expressing cells,such as T lymphocytes and mast cells. We report here that orbitalconnective tissue fibroblasts, obtained from normal donors and frompatients with severe thyroid-associated ophthalmopathy (TAO), expressfunctional CD40. CD40 is upregulated ~10-fold by interferon- (500 U/ml) treatment for 72 h. These fibroblasts become activated throughtriggering of CD40 with CD40 ligand (CD40L). This is evidenced bynuclear translocation of nuclear factor-B and induction of theproinflammatory and chemoattractant cytokines interleukin-6 andinterleukin-8, respectively. These data support the concept thatcognate interactions between orbital fibroblasts and infiltrating Tlymphocytes, via the CD40-CD40L pathway, may promote the tissueremodeling observed in TAO and other inflammatory diseases of theorbit. Disruption of the CD40-CD40L interaction may represent atherapeutic intervention to reduce the inflammatory components of TAO,which remains a vexing clinical problem.

  相似文献   

9.
CD155 (poliovirus receptor) localizes in cell-matrix adhesions and cell-cell junctions, but its role in the regulation of cell adhesion and cell motility has not been investigated. We identified a conserved immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain of human CD155alpha. The ITIM was tyrosine-phosphorylated upon binding of anti-CD155 monoclonal antibody D171, poliovirus, and DNAM-1 (CD226) to human CD155alpha, and recruited SH2-domain-containing tyrosine phosphatase-2 (SHP-2). After CD155alpha stimulation with its ligands, cell adhesion was inhibited and cell motility was enhanced, effects that were associated with the phosphorylation of ITIM by Src kinases and accompanied by dephosphorylation of focal adhesion kinase and paxillin. These effects were abolished by introducing a point-mutation in Y398F into the ITIM of CD155alpha and by coexpression of a dominant negative SHP-2 mutant with CD155alpha. These results suggest that CD155alpha plays a role in the regulation of cell adhesion and cell motility.  相似文献   

10.
Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.  相似文献   

11.
Bojic L  Petelin A  Stoka V  Reinheckel T  Peters C  Turk V  Turk B 《FEBS letters》2007,581(27):5185-5190
The potential role of cysteine cathepsins, especially cathepsin B, in Fas/CD95-induced apoptosis was investigated using wild-type and cathepsin B-deficient primary skin fibroblasts. Apoptosis was induced with an anti-Fas/CD95 antibody in the presence of cycloheximide and no difference was observed between the two genotypes. First cells with damaged mitochondria were observed approximately 3h post apoptosis induction and their number was significantly increased after 11h. In contrast, cells with damaged lysosomes were only seen after 15h with no difference between the two genotypes. Moreover, Bid cleavage was found to be diminished in cathepsin B-deficient cells. These results suggest that cysteine cathepsins have no active role in Fas/CD95 apoptosis.  相似文献   

12.
13.
Augmenting immunogenicity by genetically modifying tumor cells to express costimulatory molecules has proven to be a promising therapeutic strategy in murine tumor models and is currently under investigation in human clinical trials for metastatic cancer. However, there are significant technical and logistic problems associated with implementing strategies requiring direct gene modification of primary tumor cells. In an effort to circumvent these problems, we are developing a strategy in which the costimulatory signal required for tumor-specific T lymphocyte activation is provided by a genetically modified human fibroblast (trans-costimulation). We have evaluated the efficiency of CD80- and CD86-mediated trans-costimulation in the activation of human CD8+ and CD4+ T lymphocytes in MHC class I- and class II-restricted lymphoproliferation reactions. Our studies demonstrate that the efficiency of CD80- or CD86-mediated trans-costimulation of purified human CD8+ and CD4+ T lymphocytes is comparable to cis-costimulation under defined conditions. Moreover, a dose-response relationship consistent with the predicted two-hit kinetics of the reaction was evident in trans-costimulation reactions in which the ratio of target cells expressing either signal 1 or signal 2 was varied incrementally from 1:10 to 10:1. Importantly, the level of cell-surface CD86 required for trans-costimulation is equivalent to that constitutively expressed by human peripheral blood monocytes. These results may have significant implications for the clinical implementation of this type of cancer immunotherapy and also raise questions about the possibility of trans-costimulating autoreactive T lymphocytes in vivo.  相似文献   

14.
Liang F  Qi RZ  Chang CF 《Cellular signalling》2002,14(11):933-939
CD157, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, has recently been shown to induce protein tyrosine phosphorylation in monocytes differentiated from HL-60 cells (mHL-60) in a ligand-dependent manner, but in a ligand-independent manner in stable CD157-transfected CHO (CHO/CD157) and MCA102 (MCA/CD157) fibroblasts [Cell Signal. 11 (1999) 891-897.]. Many GPI-anchored proteins need to be clustered by their ligands or antibodies to induce redistribution to caveolae and a concomitant activation of the associated signal-transducing proteins [Nature 387 (1997) 569-572.]. Here, we demonstrate that CD157, independent of antibody crosslinking, undergoes dimerization with disulfide bond formation and localization in caveolae in CHO/CD157 and MCA/CD157 fibroblasts. However, the native CD157 induced in mHL-60 cells remains a monomer form. The structural integrity of caveolae is required for the association of CD157 with caveolin and CD157-mediated tyrosine kinase signalling in the fibroblasts. We propose that an overexpression of CD157 could lead to its dimerization and relocation to caveolae and to further result in the initiation of signalling processes.  相似文献   

15.
The CD40-CD40 ligand (CD40L) system (CD154) is a central means of immune cell communication crucial for Ig class switching and enhanced Ag presentation. CD40 is also a key signaling conduit to activate nonhematopoietic cells, such as fibroblasts and endothelial cells, to produce proinflammatory mediators. Disruption of the CD40-CD40L pathway reduces lung inflammation and fibrosis, autoimmune disease and atherosclerosis. Non-bone marrow-derived structural cells are not known to express CD40L. In this study, we reveal the intriguing finding that primary strains of human lung fibroblasts derived from normal and scarred lung express both CD40L mRNA and protein. Interestingly, CD40L expression is down-regulated by IFN-gamma, a type 1 cytokine with antiscarring properties, and is up-regulated by the profibrogenic type 2 cytokine IL-13. Flow cytometry and laser confocal microscopy revealed that the majority of CD40L was located intracellularly. Importantly, fibroblast strains from human idiopathic pulmonary fibrosis tissue expressed increased levels of CD40L compared with fibroblasts from nonscarred lung. Fibroblasts in the scarred areas of human lung tissue expressed high levels of CD40L. Finally, the blood and lung lavage levels of CD40L are significantly elevated in fibrosis patients compared with normals. These new findings demonstrate that fibroblasts are a new source of CD40L and that those involved in scarring may have undergone a selected expansion for high CD40L expression. Moreover, the antifibrotic activity of IFN-gamma may involve the down-regulation of fibroblast CD40L levels. We speculate that fibroblast-derived CD40L plays a role in promoting fibroblast activation and possibly in interaction with CD40 bearing cells.  相似文献   

16.
The activation of phagocytes by lipopolysaccharide (LPS) has been implicated in the pathogenesis of Gram-negative sepsis. Although the interaction between CD14 and LPS is a key event in the signaling cascade, the molecular mechanism by which cellular activation occurs remains obscure. We hypothesized that the main function of CD14 was to bind LPS and transfer it to a second receptor, which then initiates the subsequent signal for cellular activation. Thus, surface binding of LPS to the cell membrane would be the critical step that CD14 carries out. To test this hypothesis, we examined the activity of two other proteins known to bind LPS, lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein. We found that when these normally soluble proteins were expressed in Chinese hamster ovary-K1 fibroblasts as glycosylphosphatidylinositol-anchored proteins, both could substitute for CD14 in initiating LPS signaling. Pharmacological studies with synthetic lipid A analogues demonstrated that these surface expressed LPS-binding proteins had characteristics that were qualitatively identical to membrane CD14. These data support the hypothesis that a receptor distinct from CD14 functions as the actual signal transducer and suggest that surface binding of LPS to the cell membrane is the crucial first step for initiating downstream signaling events.  相似文献   

17.
Fibroblasts are cultured in three-dimensional collagen matrices to investigate the effect of mechanical tension on the regulation of apoptosis. Under the influence of mechanical loading, the cells show little apoptosis whereas releasing of tension leads to an increase up to tenfold during the first 24 h and remains constant for further 48 h. An autocrine loop of the integrin V3/CD47 receptor complex and thrombospondin-1 is identified as the molecular coupling device between mechanical loading and apoptosis: The integrin V3 is expressed under mechanical loading as well as unloading whereas the CD47 could only be identified after the release of tension. The secreted thrombospondin binds to the active receptor and induces apoptosis. The presented mechanosensitive regulation of apoptosis in fibroblast cultures could be an essential mechanism for the regression of the granulation tissue by apoptosis in the process of wound healing.  相似文献   

18.
19.
Trypanosoma cruzi, the causative agent of Chagas disease, is able to reproduce intracellularly in many host cell types while in the mammalian host. Although cellular immunity is known to be important in resistance to infection, the ability of immune cells to interfere with the completion of the intracellular growth cycle of T. cruzi has not been described. Using a tissue culture system to study the parasite growth cycle, we have found that spleen cells from infected mice are able to decrease the number of parasites released from infected fibroblasts. Spleen cells from mice infected for as few as 14 days and as long as 300 days display this inhibitory ability. Parasite egress from infected cells is inhibited by factor(s) released by immune cells during coculture with infected fibroblasts. Immune cell depletion studies indicate that the inhibitory activity requires the presence of both CD4+ T cells and mu+ B cells. These results suggest a direct ability of immune cells to somehow interfere with the completion of the intracellular cycle, and this ability may play a role in control of this parasite.  相似文献   

20.
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44‐positive (CD44+Fbs) and CD44‐negative carcinoma‐associated fibroblasts (CD44?Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel‐induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号