首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FTIR spectroscopy and fluorescence polarization were used to show that a bacterial dirhamnolipid interacts with phospholipid membranes composed of DPPC, altering both the acyl chain and the interfacial region of the bilayer. Incorporation of increasing amounts of dirhamnolipid into 2H-DPPC membranes broadened the transition and shifted the transition temperature toward lower values, according to the effect on the CD2 stretching vibration. Examination of the 13CO stretching band of 13C-DPPC indicated that, both below and above the phase transition, dirhamnolipid produced a shift of the band frequency toward higher values, indicating a strong dehydration of the phospholipid CO groups, and therefore of the interfacial region of the membrane. The effects on DPH and TMA-DPH fluorescence polarization provided additional support to hypothesize on the location of trehalose lipid within the bilayer. The results shown here could help to explain some of the interesting membrane-related biological actions of rhamnolipids reported before.  相似文献   

2.
B M Cohen  G S Zubenko 《Life sciences》1985,37(15):1403-1409
Fluorescence spectroscopy was used to examine the biophysical characteristics of human platelet membranes as a function of subject age. The structural order of membrane lipid domains was determined with the use of 1,6-diphenyl-1,3,5-hexatriene (DPH), a fluorescent probe that preferentially localizes in the hydrocarbon core of synthetic and biological membranes. Over the age range of subjects examined (17 to 86 years) the structural order of platelet membranes, as reflected by the steady-state fluorescence polarization of DPH, increased substantially. The magnitude of the observed increase in membrane structural order is sufficient to affect membrane-related cell functions including platelet aggregation. A major contributor to the increase in structural order of platelet membranes may have been an increase in the concentration of cholesterol in serum and tissue with age. The changes observed here in platelet membranes may be a general phenomenon of aging, as changes of similar type and magnitude have been observed in lymphocyte membranes and brain with age in other studies.  相似文献   

3.
The hydration of solid dimyristoylphosphatidylethanolamine (DMPE) produces a negligible shift in the asymmetric stretching frequency of the phosphate groups in contrast to dimyristoylphosphatidylcholine (DMPC). This suggests that the hydration of DMPE is not a consequence of the disruption of the solid lattice of the phosphate groups as occurs in DMPC. The strong lateral interactions between NH3 and PO2 groups present in the solid PEs remain when the lipids are fully hydrated and seem to be a limiting factor for the hydration of the phosphate group hindering the reorientation of the polar heads. The lower mobility is reflected in a higher energy to translocate the phosphoethanolamine (P-N) dipoles in an electrical field. This energy is decreased in the presence of increasing ratios of PCs of saturated chains in phosphoethanolamine monolayer. The association of PC and PE in the membrane affecting the reorientation of the P-N groups is dependent of the chain-chain interaction. The dipole potentials of PCs and PEs mixtures show different behaviors according to the saturation of the acyl chain. This was correlated with the area in monolayers and the hydration of the P-N groups. In spite of the low hydration, DMPE is still able to adsorb fully hydrated proteins, although in a lower rate than DMPC at the same surface pressure. This indicates that PE interfaces posses an excess of surface free energy to drive protein interaction. The relation of this free energy with the low water content is discussed.  相似文献   

4.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (δdT≈0.22 nm/°C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lα phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lβ with a repeat distance, d=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid–lipid interactions through modulation of the membrane structure.  相似文献   

5.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (deltad/deltaT approximately 0.22 nm/ degrees C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lalpha phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lbeta with a repeat distance, dLbeta=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid-lipid interactions through modulation of the membrane structure.  相似文献   

6.
The influence of cholesterol on the sphingomyelin (SM)/dioleoylphosphatidylcholine (DOPC) binary system was investigated in various respects. Electron spin resonance (ESR) measurements reveal that the order parameter of 5DS (5-doxyl stearic acid) in SM/DOPC bilayers increases notably when the concentration of cholesterol is over 30 mol%. Membrane potential measurements indicate that the K+ permeability of the SM/DOPC bilayer decreases steeply at 40 mol% cholesterol concentration. Both these experiments suggest that cholesterol reduces the motion amplitude of hydrocarbon chains abruptly above 30 mol%. In contrast to the ordering effects on the hydrocarbon chains, 31P-NMR results indicate that cholesterol slightly increases the motion of phosphate groups of the lipids. 31P-NMR also raises the possibility of domain formation in the presence of cholesterol. Fluorescence-quenching experiments verified that solid domains appear in the binary system when cholesterol is present, and percolation threshold occurs at 50 mol% cholesterol concentration. The solid domains bear the properties of liquid ordered phase, which is the basic structure of caveolae and functional rafts. So this work provides an artificial model for the study of rafts and caveolae on biological membranes. Received: 29 January 2001/Revised: 17 May 2001  相似文献   

7.
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.  相似文献   

8.
《Molecular cell》2022,82(19):3677-3692.e11
  1. Download : Download high-res image (112KB)
  2. Download : Download full-size image
  相似文献   

9.
Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.  相似文献   

10.
Oxidation of unsaturated membrane phospholipids by oxidative stress is associated with inflammation, infection, numerous diseases and neurodegenerative disorders. Lipid oxidation is observed in experimental samples when the parent lipid is exposed to oxidative stressors. The effect of phospholipid oxidation on the properties of biological membranes are still being explored, while low concentrations (0.1–2.0?mol%) of oxidised phospholipids are associated with disease states [1]. Previous computational studies have focused on the effect of high concentrations (~50?mol%) of oxidised phospholipids on binary lipid bilayers. This work systematically characterises the effect of lower concentrations (~10?mol%) of two oxidised lipid species, PoxnoPC (1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) or PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine), on POPC/cholesterol and pure POPC bilayers. During μs atomistic simulations in pure POPC bilayers, PoxnoPC and PazePC reoriented their oxidised sn-2 acyl chains towards the solution, and PazePC adopted an extended conformation. The addition of 20?mol% cholesterol not only modulated the fluidity of the bilayers; it also modulated the flexibility of the PoxnoPC oxidised sn-2 tail, reducing bilayer disorder. In contrast, the addition of cholesterol had little effect on bilayers containing PazePC. Our studies show that the effect of oxidised lipids on the biophysical properties of a multicomponent bilayer cannot be intuitively extrapolated from a binary lipid system.  相似文献   

11.
The interaction of cholesterol with the glycerol backbone segments of phospholipids was studied in bilayers of phosphatidylethanolamine containing equimolar amounts of cholesterol. Glycerol selectively deuterated at various positions was supplied to the growth medium of Escherichia coli strain 131 GP which is defective in endogeneous glycerol synthesis. The procedure enables the stereospecific labeling of the three glycerol backbone segments of the membrane phospholipids. Phosphatidylethanolamine with wild-type fatty acid composition was purified from E. coli cells and deuterium magnetic resonance spectra were obtained either from dispersions of pure phosphatidylethanolamine or from equimolar mixtures of phosphatidylethanolamine with cholesterol. For comparative purposes 1,2-di[9,10-2H2]elaidoyl-sn-glycero-3-phosphoethanolamine and [3-α-2H]cholesterol were synthesized in order to monitor the behavior of the fatty acyl chains and of the cholesterol molecule itself. For all deuterated segments the deuterium quadrupole splittings as well as the deuterium spin-lattice (T1) relaxation times were measured as a function of temperature. The glycerol backbone was found to be a remarkably stable structural element of the phospholipid molecule. The quadrupole splittings of the backbone segments changed only by at most 2 kHz upon incorporation of 50 mol % cholesterol. This was in contrast to the fatty acyl chains where the same amount of cholesterol increased the quadrupole splitting by more than 20 kHz. The glycerol segments exhibited the shortest T1 relaxation times of all CH2 segments indicating that the glycerol backbone is the slowest motional moiety of the lipid molecule. Addition of cholesterol has no effect on the backbone motion but the fast reorientation rate of the trans-double bonds in 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine is increased dramatically.  相似文献   

12.
This study examines the relationship between cellular sphingomyelin content and the distribution of unesterified cholesterol between the plasma-membrane pool and the putative intracellular regulatory pool. The sphingomyelin content of cultured human skin fibroblasts was reduced by treatment of intact cells with extracellularly added neutral sphingomyelinase, and subsequent changes in the activities of cholesterol-metabolizing enzymes were determined. Exposure of fibroblasts to 0.1 unit of sphingomyelinase/ml for 60 min led to the depletion of more than 90% of the cellular sphingomyelin, as determined from total lipid extracts. In a time-course study, it was found that within 10 min of the addition of sphingomyelinase to cells, a dramatic increase in acyl-CoA:cholesterol acyltransferase activity could be observed, whether measured from the appearance of plasma membrane-derived [3H]cholesterol or exogenously added [14C]oleic acid, in cellular cholesteryl esters. In addition, the cholesteryl ester mass was significantly higher in sphingomyelin-depleted fibroblasts at 3 h after exposure to sphingomyelinase compared with that in untreated fibroblasts [7.1 +/- 0.4 nmol of cholesterol/mg equivalents of esterified cholesterol compared with 4.2 +/- 0.1 nmol of cholesterol/mg equivalents of cholesteryl ester in control cells (P less than 0.05)]. The sphingomyelin-depleted cells also showed a reduction in the rate of endogenous synthesis of cholesterol, as measured by incorporation of sodium [14C]acetate into [14C]cholesterol. These results are consistent with a rapid movement of cholesterol from sphingomyelin-depleted plasma membranes to the putative intracellular regulatory pool of cholesterol. This mass movement of cholesterol away from the plasma membranes presumably resulted from a decreased capacity of the plasma membranes to solubilize cholesterol, since sphingomyelin-depleted cells also had a decreased capacity to incorporate nanomolar amounts of [3H]cholesterol from the extracellular medium, as compared with control cells. These findings confirm previous assumptions that the membrane sphingomyelin content is an important determinant of the overall distribution of cholesterol within intact cells.  相似文献   

13.
The proatherogenic properties of the cholesterol 5,6-secosterols (atheronal-A and atheronal-B), recently discovered in atherosclerotic arteries, have been investigated in terms of their effects on monocyte/macrophage function. A fluorescent analogue of atheronal-B (1) (50 microM), when cultured in either aqueous buffer (PBS) or in media containing fetal calf serum (10%), is rapidly taken-up into cultured macrophage (J774.1 or RAW 264.7) cells and accumulates at perinuclear sites (within 1 h). Co-incubation of macrophage cells (J774.1) with atheronal-A (25 microM) and atheronal-B (25 microM) when complexed with low-density lipoprotein (LDL) (100 microg/mL) leads to a significant upregulation of scavenger receptor class A (approximately 3-fold increase relative to LDL alone, p < 0.05) but not CD36, showing that cultured macrophages respond to LDL-complexed atheronals in a manner highly analogous to acetylated LDL rather than oxidized LDL. Both atheronal-A and atheronal-B in solution exhibit a dose-dependent (0-25 microM) induction of chemotaxis of cultured macrophages (p < 0.001). When complexed with LDL (100 microg/mL), atheronal-A (but not atheronal-B) induces a dose-dependent (0-25 microM, p < 0.05) upregulation of the cell-surface adhesion molecule endothelial (E)-selectin on vascular endothelial cells (HUVECs). LDL (100 microg/mL) complexed atheronal-B (25 microM) but not atheronal-A induces cultured human monocytes (THP-1) to differentiate into macrophage cell lineage. When these in vitro data are taken together with the already known effects of cholesterol 5,6-secosterols on foam cell formation and macrophage cytotoxicity, the atheronals possess biological effects that if translated to an in vivo setting could lead to the recruitment, entrapment, dysfunction, and ultimate destruction of macrophages, with the major leukocyte player in inflammatory artery disease. As such, the atheronal molecules may be a new association, in the already complex inter-relationship, between inflammation, cholesterol oxidation, the tissue macrophage, and atherosclerosis.  相似文献   

14.
The PS-R gene product was originally described as a cell surface receptor that interacts with externalized phosphatidylserine (PS) on apoptotic cells, but more recent studies have shown that it plays a critical role in organ development and terminal differentiation of many cell types during embryogenesis. Despite these important developmental functions, the biochemical and molecular properties of PS-R are poorly understood. Here we have used several approaches to show that PS-R undergoes processive post-translational protein cross-linking to form covalent multimers within the nuclear compartment. Although PS-R has a potential Glu-Glu (QQ) duet that is often targeted by transglutaminase TG-2, the oligomerization of PS-R was not effected by QQ→AA mutation, or when PS-R gene product was expressed in TG-2 (-/-) fibroblasts. Pulse-chase experiments with 35 S-methionine indicates that the PS-R undergoes an initial proteolytic cleavage, followed by progressive multimerization of the monomeric subunits over time. In summary, we report here that PS-R is modified by an unusual post-translational modification, and we speculate that homomultimer of PS-R might be playing an important function as a scaffolding protein in the nucleus.  相似文献   

15.
The tear film lipid layer (TFLL), the final layer of the human tear film is responsible for surface tension reduction while blinking, water evaporation retardation and maintaining the stability of the tear film. The study of the composition-structure-function relationship of TFLL is paramount, as a compromised structure of TFLL leads to the emergence of dry eye disease (DED) which is one the most prevalent ophthalmic surface diseases of the modern world, associated with chronic pain and reduced visual capability. In this model membrane study, a systematic approach is used to study the biophysical properties of TFLL model membranes as a function of composition. Three mixed-lipid model membranes are studied along with their individual components comprising cholesteryl oleate (CO), glyceryl trioleate (GT), L-α-phosphatidylcholine (egg PC) and a free fatty acid mixture. The models become progressively more complex from binary to quaternary mixtures, allowing the role of each individual lipid to be derived. Langmuir balance, Brewster Angle Microscopy (BAM) and Profile Analysis Tensiometer (PAT) are used to study the surface activity and compression-expansion cycles, morphology, and rheological behaviour of the model membranes, respectively. Evidence of multilayering is observed with inclusion of CO and a reversible collapse is associated with the GT phase transition. An initially more coherent film is observed due to the addition of polar PC. Notably, these individual behaviours are retained in the mixed films and suggest a possible role for each physiological component of TFLL.  相似文献   

16.
Hypoxia alters the barrier function of the endothelial cells that line the pulmonary vasculature, but underlying biophysical mechanisms remain unclear. Using rat pulmonary microvascular endothelial cells (RPMEC) in culture, we report herein changes in biophysical properties, both in space and in time, that occur in response to hypoxia. We address also the molecular basis of these changes. At the level of the single cell, we measured cell stiffness, the distribution of traction forces exerted by the cell on its substrate, and spontaneous nanoscale motions of microbeads tightly bound to the cytoskeleton (CSK). Hypoxia increased cell stiffness and traction forces by a mechanism that was dependent on the activation of Rho kinase. These changes were followed by p38-mediated decreases in spontaneous bead motions, indicating stabilization of local cellular-extracellular matrix (ECM) tethering interactions. Cells overexpressing phospho-mimicking small heat shock protein (HSP27-PM), a downstream effector of p38, exhibited decreases in spontaneous bead motions that correlated with increases in actin polymerization in these cells. Together, these findings suggest that hypoxia differentially regulates endothelial cell contraction and cellular-ECM adhesion. endothelial barrier; cytoskeleton; actin dynamics; stiffness; tensile stress  相似文献   

17.
The alignment of the sn-1 and sn-2 acyl chains at the terminal methyl ends generally produces significant influence on the thermodynamic properties of the bilayer phase transitions. We investigated the bilayer phase behavior of asymmetric phospholipids, myristoylpalmitoylphosphatidylcholine and palmitoylmyristoylphosphatidylcholine, by high-pressure light-transmittance and Prodan-fluorescence techniques and differential scanning calorimetry. Constructed temperature-pressure phase diagrams revealed that no stable phase can exist in the whole pressure range because of the formation of the most stable Lc phase. Nevertheless, the pretransition, the detection of which is severely hampered by the exceptionally prompt formation of the Lc phase, was successfully observed. Moreover, the effect of the total and difference of the sn-1 and sn-2 acyl chain lengths on minimal interdigitation pressure (MIP) was summarized in a MIP vs. chain-length inequivalence parameter plot, where the effect was proved to be classified in three zones depending on the alignment of both terminal methyl ends.  相似文献   

18.
Dolichols are isoprenologues that are found in almost all tissues and whose biochemical function, aside from dolichol phosphate precursors, is not known. In addition, an understanding of the organizational and dynamic properties of dolichols in biological membranes has not been forthcoming. The purpose of the experiments reported here were to examine the effects of dolichol on the physical properties of mouse synaptic plasma membranes (SPM). Differential polarized phase fluorometry indicated that dolichol both fluidized and rigidified SPM. Membrane areas detected by diphenylhexatriene and trans-parinaric acid were selectively fluidized and rigidified, respectively. It also was found that the spin label, 5-doxyl stearic acid indicated that dolichol reduced membrane fluidity. These results report for the first time a structural effect of dolichol on a biological membrane.  相似文献   

19.
The properties of cholesterol in bilayers of egg phosphatidylcholine (PC) were investigated directly by means of 2H-NMR of specifically-deuterated species (C3, C7, C26, C27). Quadrupole splittings were a measure of molecular ordering, and relaxation times T1 and T2e were indicators of rates of motion. The importance of the use of echoes for spectral acquisition is emphasised, particularly to obtain accurate values of the quadrupole splitting. In the case of overlapping powder patterns from two labelled positions, the use of the absolute value mode of spectral presentation is shown to yield reasonable estimates of the individual quadrupole splittings. Spectral properties were monitored as a function of cholesterol concentration and temperature. Increasing cholesterol concentration led to a high degree of ordering for the rigid ring system of cholesterol, approaching a molecular order parameter of 0.8 at 50 mol% cholesterol. The isopropyl methyl groups were in all cases less ordered anmore mobile than the ring system, but responded in a similar fashion to variable cholesterol concentration and temperature. The observation of a minimum in the temperature dependence of T1 for cholesterol-7,7-d2 led to a direct estimate of its correlation time for molecular motion, 3.5 × 10?9 s rad?1. This indicates that the overall rate of motion of cholesterol is considerably slower than that of the lipids in which it is located. The short T2e values suggest that the motional spectrum of cholesterol is rich in low frequencies. The parallel temperature and cholesterol dependences of quadrupole splittings for different positions on the rigid ring system of cholesterol indicate that the position of the axis of motional averaging of the molecule is not changing, and is the same as that determined in an earlier study. It is emphasised that the steep temperature dependence and small quadrupole splittings for the chain isopropyl methyl groups of cholesterol do not necessarily indicate a high degree of disorder, but may be due to their axes of motional averaging lying at angles close to 54° with respect to the director of the ordered lipids.  相似文献   

20.
Arachidonic acid (20:4) and other fatty acids and aldehydes in phosphatidylethanolamine (PE) present on the platelet surface was determined. Surface-exposed PE was isolated by using 2,4,6-trinitrobenzenesulfonate, a nonpenetrating probe (Schick, P.K., Kurica, K.B. and Chacko, G.K. (1976) J. Clin. Invest. 57, 1221–1226). PE contains 50% total platelet arachidonic acid. Approx. 16% platelet PE is present on the platelet surface. The study showed that the fatty acid and aldehyde composition of PE on the platelet surface is virtually identical to that in PE present inside the platelet. Therefore, 8 nmol arachidonic acid are present in PE in the outer layer of the plasma membrane in 109 platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号