首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D T Poon  J Wu    A Aldovini 《Journal of virology》1996,70(10):6607-6616
Interaction of the human immunodeficiency virus type 1 (HIV-1) Gag precursor polyprotein (Pr55Gag) with the viral genomic RNA is required for retroviral replication. Mutations that reduce RNA packaging efficiency have been localized to the highly basic nucleocapsid (NC) p7 domain of Pr55Gag, but the importance of the basic amino acid residues in specific viral RNA encapsidation and infectivity has not been thoroughly investigated in vivo. We have systematically substituted the positively charged residues of the NC domain of Pr55Gag in an HIV-1 viral clone by using alanine scanning mutagenesis and have assayed the effects of these mutations on virus replication, particle formation, and RNA packaging in vivo. Analysis of viral clones with single substitutions revealed that certain charged amino acid residues are more critical for RNA packaging efficiency and infectivity than others. Analysis of viral clones with multiple substitutions indicates that the presence of positive charge in each of three independent domains--the zinc-binding domains, the basic region that links them, and the residues that Hank the two zinc-binding domains--is necessary for efficient HIV-1 RNA packaging. Finally, we note that some mutations affect virus replication more drastically than RNA incorporation, providing in vivo evidence for the hypothesis that NC p7 may be involved in aspects of the HIV life cycle in addition to RNA packaging.  相似文献   

2.
The nucleocapsid proteins (NCps) of lentiviruses play a key role during the retroviral replication cycle. NCps contain one or two highly conserved domains characterized by a CX(2)CX(4)HX(4)C sequence which binds zinc with a high affinity. The reasons of the high conservation of zinc fingers of CCHC type in lentiviruses were investigated by a structural study of mutants in which the zinc-coordinated ligands were exchanged. The HCHC form was unable to bind zinc tetrahedrally, whereas in His(28)(13-30)NCp7 corresponding to the CCHH motif, the zinc was tightly complexed. The mutant peptide exists in two interconverting conformations E and D [DeltaG(DE) (293K) = 0.1 kcal/mol] arising from the zinc coordination of His(28), by either its Nepsilon2 or its Ndelta1, respectively. As compared to the native CCHC zinc finger, the Cys(28) --> His mutation induces structural changes in the finger due to a modification in the coordination state of His(23) bound to zinc by Nepsilon2 in the wild-type finger by Ndelta1 in both conformers of the mutant. Introduction of these single mutations within the NCp7 proximal zinc finger in the HIV-1 genome was very recently shown to result in a loss of viral infection. This supports the hypothesis that structural changes of the zinc finger domain of NCp7 inhibit the recognition of one or several targets critically involved in the virus life cycle.  相似文献   

3.
R D Berkowitz  J Luban    S P Goff 《Journal of virology》1993,67(12):7190-7200
Packaging of retroviral genomic RNA during virion assembly is thought to be mediated by specific interactions between the gag polyprotein and RNA sequences (often termed the psi or E region) near the 5' end of the genome. For many retroviruses, including human immunodeficiency virus type 1 (HIV-1), the portions of the gag protein and the RNA that are required for this interaction remain poorly defined. We have used an RNA gel mobility shift assay to measure the in vitro binding of purified glutathione S-transferase-HIV-1 gag fusion proteins to RNA riboprobes. Both the complete gag polyprotein and the nucleocapsid (NC) protein alone were found to bind specifically to an HIV-1 riboprobe. Either Cys-His box of NC could be removed without eliminating specific binding to the psi riboprobe, but portions of gag containing only the MA and CA proteins without NC did not bind to RNA. There were at least two binding sites in HIV-1 genomic RNA that bound to the gag polyprotein: one entirely 5' to gag and one entirely within gag. The HIV-1 NC protein bound to riboprobes containing other retroviral psi sequences almost as well as to the HIV-1 psi riboprobe.  相似文献   

4.
5.
6.
7.
8.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

9.
10.
11.
The highly conserved zinc fingers in retroviral nucleocapsid (NC) proteins have the general structure Cys-(X)2-Cys-(X)4-His-(X)4-Cys. Human immunodeficiency virus type 1 (HIV-1) contains two Zn2+ fingers, and mutants were constructed in which the native sequence of each Zn2+ finger was maintained but their positions in the NC protein were changed. Mutants had either two first-finger sequences (pNC1/1), two second-finger sequences (pNC2/2), or reversed first- and second-finger sequences (pNC2/1). Cells transfected with mutant or wild-type clones produced similar levels of Tat, Gag, Pol, and Env proteins, formed syncytia, and shed viruslike particles that were indistinguishable by electron microscopy. However, the pNC2/1 and pNC2/2 mutants were inefficient in packaging genomic RNA (less than 15% of wild-type levels), whereas the pNC1/1 mutant packaged approximately 70% of wild-type levels of RNA. No infectious virus could be detected with either the pNC2/1 or pNC2/2 mutants, whereas the pNC1/1 mutant appeared to sustain a low level of replication and reverted to a competent wild-type-like viral species after a 2- to 4-week lag period. The data strongly suggest that the two Zn2+ fingers of HIV-1 are not functionally equivalent and that the first Zn2+ finger in the Gag precursor plays a more prominent role in RNA selection and packaging. The data also indicate that both Zn2+ fingers in the mature NC protein play as yet unknown roles in viral assembly or the early stages of the viral infection process.  相似文献   

12.
Madani N  Kabat D 《Journal of virology》2000,74(13):5982-5987
The vif gene of human immunodeficiency virus type 1 (HIV-1) greatly enhances the infectivity of HIV-1 virions that are released from cells classified as nonpermissive (e.g., lymphocytes, macrophages, and H9 leukemic T cells) but is irrelevant in permissive cells (e.g., HeLa or COS cells). Recently, it was reported that vif expression in nonpermissive cells dramatically increases infectivity not only of HIV-1 but also of other enveloped viruses, including murine leukemia viruses (MLVs). This was surprising in part because MLVs and other murine retroviruses lack vif genes yet replicate efficiently in T lymphocytes. To investigate these issues, we first developed improved methods for producing substantial quantities of HIV-1 virions with vif deletions from healthy H9 cells. These virions had approximately the same amounts of major core proteins and envelope glycoproteins as the control wild-type virions but were only approximately 1% as infectious. We then produced H9 cells that contained wild-type or vif deletion HIV-gpt proviruses, which lack a functional env gene. After superinfection with either xenotropic or amphotropic MLVs, these cells released HIV-gpt virions pseudotyped with an MLV envelope plus replication-competent MLV. Interestingly, the pseudotyped HIV-gpt (vif deletion) virions were noninfectious, whereas the MLV virions simultaneously released from the same H9 cells were fully infectious. These results strongly suggest that the Vif protein functions in a manner that is both cell specific and at least substantially specific for HIV-1 and related lentiviruses. In addition, these results confirm that vif deletion HIV-1 virions from nonpermissive cells are blocked at a postpenetration stage of the infection pathway.  相似文献   

13.
We have previously described a series of human immunodeficiency virus type 1-based vectors in which efficient RNA encapsidation appeared to correlate with the presence of a 1.1-kb env gene fragment encompassing the Rev-responsive element (RRE). In this report, we explore in detail the role of the RRE and flanking env sequences in vector expression and RNA encapsidation. The analysis of a new series of vectors containing deletions within the env fragment failed to identify a discrete packaging signal, although the loss of certain sequences reduced packaging efficiency three- to fourfold. Complete removal of the env fragment resulted in a 100-fold decrease in the vector transduction titer but did not abolish RNA encapsidation. We conclude that the RRE and 3' env sequences are not essential for human immunodeficiency virus type 1 vector encapsidation but may be important in vectors in which a heterologous gene has been placed adjacent to the 5' packaging signal, potentially disrupting its structure.  相似文献   

14.
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.  相似文献   

15.
The interaction of the nucleocapsid protein NCp7, from the pNL4-3 isolate of HIV-1, with psi-RNA-SL3, with the sequence 5'-GGACUAGCGGAGGCUAGUCC, was studied using non-denaturing gel electrophoresis. Two kinds of experiments were performed, using buffered solutions of radiolabeled RNA and unlabeled protein. In the 'dilution' experiments, the total RNA concentration, RT, was varied for a series of solutions, but kept equal to the total protein concentration, PT, In the 'titration' experiments, solutions having RT constant but with varying PT were analyzed. The solutions were electrophoresed and the autoradiographic spot intensities, proportional to the amounts of the different species present, were measured. The intensities were fit to a number of equilibrium models, differing in species stoichiometries, by finding the best values of the binding constants. It was shown that NCp7 protein and SL3 RNA combine to form at least two complexes. When PT is below approximately 10 microM, a complex that contains two RNAs and one protein forms. Increasing PT to approximately 100 microM causes the 2:1 complex to oligomerize, forming a species having eight RNAs and four proteins. For the dilution experiments, run at 5 degrees C at an ionic strength of 31 mM, we found K1 for the 2:1 complex is approximately 10(11) M(-2) and K2 for the 8:4 complex is approximately 10(16) M(-3). The titration experiments returned K1 approximately 10(7) M(-2) (poorly determined) and K2 approximately 10(19) M(-3). The analysis was complicated by the loss of RNA at higher protein concentrations, due to formation of an insoluble species containing both RNA and protein, which does not enter the gel. Correcting for this changes the calculated values of equilibrium constants, but not the molecularities determined by our analysis. The observation that a small complex can oligomerize to form a larger species is consistent with the fact that NCp7 organizes and condenses the genome in the virus particle.  相似文献   

16.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

17.
The phenotypes of a series of mutant human immunodeficiency virus type 1 proviruses with linker insertion and deletion mutations within the gag coding region were characterized. These mutants were tested for their ability to make and release viral particles in COS7 cells and for their viability in vivo. Of the 12 mutant proviruses, 4 did not make extracellular virion particles when transfected into COS7 cells. All four of these mutants had mutations in the C-terminal domain of CA. These mutants appeared to have defects both in the ability to accumulate high-molecular-weight intracellular structures containing Gag and Pol products and in the ability to release virion particles. Seven of the mutant proviruses retained the ability to make, release, and process virion particles from COS7 cells. These particles contained the Env glycoprotein, viral genomic RNA, and the mature products of the Gag and Gag-Pol polyproteins, yet they were noninfectious or poorly infectious. The defect in these mutants appears to be in one of the early steps of the viral life cycle. Thus, multiple regions throughout Gag appear to be important in mediating the early steps of the viral life cycle.  相似文献   

18.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

19.
Luo K  Liu B  Xiao Z  Yu Y  Yu X  Gorelick R  Yu XF 《Journal of virology》2004,78(21):11841-11852
APOBEC3G exerts its antiviral activity by targeting to retroviral particles and inducing viral DNA hypermutations in the absence of Vif. However, the mechanism by which APOBEC3G is packaged into virions remains unclear. We now report that viral genomic RNA enhances but is not essential for human APOBEC3G packaging into human immunodeficiency virus type 1 (HIV-1) virions. Packaging of APOBEC3G was also detected in HIV-1 Gag virus-like particles (VLP) that lacked all the viral genomic RNA packaging signals. Human APOBEC3G could be packaged efficiently into a divergent subtype HIV-1, as well as simian immunodeficiency virus, strain mac, and murine leukemia virus Gag VLP. Cosedimentation of human APOBEC3G and intracellular Gag complexes was detected by equilibrium density and velocity sucrose gradient analysis. Interaction between human APOBEC3G and HIV-1 Gag was also detected by coimmunoprecipitation experiments. This interaction did not require p6, p1, or the C-terminal region of NCp7. However, the N-terminal region, especially the first 11 amino acids, of HIV-1 NCp7 was critical for HIV-1 Gag and APOBEC3G interaction and virion packaging. The linker region flanked by the two active sites of human APOBEC3G was also important for efficient packaging into HIV-1 Gag VLP. Association of human APOBEC3G with RNA-containing intracellular complexes was observed. These results suggest that the N-terminal region of HIV-1 NC, which is critical for binding to RNA and mediating Gag-Gag oligomerization, plays an important role in APOBEC3G binding and virion packaging.  相似文献   

20.
The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Psi hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号