首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping epistatic quantitative trait loci with one-dimensional genome searches   总被引:14,自引:0,他引:14  
Jannink JL  Jansen R 《Genetics》2001,157(1):445-454
The discovery of epistatically interacting QTL is hampered by the intractability and low power to detect QTL in multidimensional genome searches. We describe a new method that maps epistatic QTL by identifying loci of high QTL by genetic background interaction. This approach allows detection of QTL involved not only in pairwise but also higher-order interaction, and does so with one-dimensional genome searches. The approach requires large populations derived from multiple related inbred-line crosses as is more typically available for plants. Using maximum likelihood, the method contrasts models in which QTL allelic values are either nested within, or fixed over, populations. We apply the method to simulated doubled-haploid populations derived from a diallel among three inbred parents and illustrate the power of the method to detect QTL of different effect size and different levels of QTL by genetic background interaction. Further, we show how the method can be used in conjunction with standard two-locus QTL detection models that use two-dimensional genome searches and find that the method may double the power to detect first-order epistasis.  相似文献   

2.
Zhu C  Zhang R 《Heredity》2007,98(6):401-410
The triple test cross (TTC) is an experimental design for detecting epistasis and estimating the components of genetic variance for quantitative traits. In this paper, we extend the analysis to include molecular information. The statistical power of the mating design was assessed under a model assuming that a finite number of loci affect the trait in question. Formulae are developed for the analysis with or without marker information relating to the recombination fraction between loci, the genetical properties of quantitative trait controlled by the quantitative trait loci (QTL), the linkage phases of the parents and population size. Application of these formulae showed that the recombination fraction between genes and the magnitude and the types of epistasis have important interactions in their effects on power. The results demonstrate that the TTC may have increased power to detect epistasis when marker information is present. However, the simulation experiments show that the standard deviation of the estimated expected mean square was higher with one marker than that with two, whereas the corresponding value without marker information was the lowest. In addition, we demonstrate that the relative position of QTL and markers and the number of markers can both affect the power of epistatic detection.  相似文献   

3.
Estimating the genetic architecture of quantitative traits   总被引:20,自引:0,他引:20  
Understanding and estimating the structure and parameters associated with the genetic architecture of quantitative traits is a major research focus in quantitative genetics. With the availability of a well-saturated genetic map of molecular markers, it is possible to identify a major part of the structure of the genetic architecture of quantitative traits and to estimate the associated parameters. Multiple interval mapping, which was recently proposed for simultaneously mapping multiple quantitative trait loci (QTL), is well suited to the identification and estimation of the genetic architecture parameters, including the number, genomic positions, effects and interactions of significant QTL and their contribution to the genetic variance. With multiple traits and multiple environments involved in a QTL mapping experiment, pleiotropic effects and QTL by environment interactions can also be estimated. We review the method and discuss issues associated with multiple interval mapping, such as likelihood analysis, model selection, stopping rules and parameter estimation. The potential power and advantages of the method for mapping multiple QTL and estimating the genetic architecture are discussed. We also point out potential problems and difficulties in resolving the details of the genetic architecture as well as other areas that require further investigation. One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating.  相似文献   

4.
A quantitative trait depends on multiple quantitative trait loci (QTL) and on the interaction between two or more QTL, named epistasis. Several methods to detect multiple QTL in various types of design have been proposed, but most of these are based on the assumption that each QTL works independently and epistasis has not been explored sufficiently. The objective of the study was to propose an integrated method to detect multiple QTL with epistases using Bayesian inference via a Markov chain Monte Carlo (MCMC) algorithm. Since the mixed inheritance model is assumed and the deterministic algorithm to calculate the probabilities of QTL genotypes is incorporated in the method, this can be applied to an outbred population such as livestock. Additionally, we treated a pair of QTL as one variable in the Reversible jump Markov chain Monte Carlo (RJMCMC) algorithm so that two QTL were able to be simultaneously added into or deleted from a model. As a result, both of the QTL can be detected, not only in cases where either of the two QTL has main effects and they have epistatic effects between each other, but also in cases where neither of the two QTL has main effects but they have epistatic effects. The method will help ascertain the complicated structure of quantitative traits.  相似文献   

5.
Improvements in the usefulness of QTL analysis arise from better statistical methods applied to the problem, ability to analyze more complex mating designs, and the fitting of less simplified genetic models. Here we review the advantages of different plant mating designs in QTL analysis and conclude that diallel designs have several favorable properties. We then turn to the detection of systematic genome-wide synergistic epistasis. This form of epistasis has important implications from evolutionary (maintenance of sexual reproduction and concealment of cryptic genetic variation) and practical perspectives (response to pyramided favorable alleles). We develop two methods for detecting systematic synergistic epistasis, one based on analyzing interactions between locus effects and predicted individual genotypic values and one based on analyzing pairwise locus interactions. Using the first method we detect synergistic epistasis in a barley and a wheat dataset but not in a maize dataset. We fail to detect synergistic epistasis with the second method. We discuss our results in the light of theoretical questions concerning the mechanisms of synergistic epistasis.  相似文献   

6.
A new methodology based on mixed linear models was developed for mapping QTLs with digenic epistasis and QTL×environment (QE) interactions. Reliable estimates of QTL main effects (additive and epistasis effects) can be obtained by the maximum-likelihood estimation method, while QE interaction effects (additive×environment interaction and epistasis×environment interaction) can be predicted by the-best-linear-unbiased-prediction (BLUP) method. Likelihood ratio and t statistics were combined for testing hypotheses about QTL effects and QE interactions. Monte Carlo simulations were conducted for evaluating the unbiasedness, accuracy, and power for parameter estimation in QTL mapping. The results indicated that the mixed-model approaches could provide unbiased estimates for both positions and effects of QTLs, as well as unbiased predicted values for QE interactions. Additionally, the mixed-model approaches also showed high accuracy and power in mapping QTLs with epistatic effects and QE interactions. Based on the models and the methodology, a computer software program (QTLMapper version 1.0) was developed, which is suitable for interval mapping of QTLs with additive, additive×additive epistasis, and their environment interactions. Received: 23 October 1998 / Accepted: 11 May 1999  相似文献   

7.
Modeling epistasis of quantitative trait loci using Cockerham's model   总被引:10,自引:0,他引:10  
Kao CH  Zeng ZB 《Genetics》2002,160(3):1243-1261
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.  相似文献   

8.
 We describe and apply an interval mapping method for quantitative trait locus (QTL) detection using F3 and testcross progenies derived from F2 populations obtained from a diallel cross among four elite lines of maize. Linear model-based procedures were used for the test and estimation of putative QTL effects together with genetic interactions including epistasis. We mapped QTL associated with silking date and explored their genetic effects. Ten QTL were detected, and these explained more than 40% of the phenotypic variance. Most of these QTL had consistent and stable effects among genetic backgrounds and did not show significant epistasis. QTL-by-environment interaction was important for four QTL and was essentially due to changes in magnitude of allelic effects. These results show the efficiency of our method in several genetic situations as well as the power of the diallel design in detecting QTL simultaneously over several populations. Received: 2 September 1996 / Accepted: 20 December 1996  相似文献   

9.
Mapping quantitative trait Loci using generalized estimating equations.   总被引:11,自引:0,他引:11  
C Lange  J C Whittaker 《Genetics》2001,159(3):1325-1337
A number of statistical methods are now available to map quantitative trait loci (QTL) relative to markers. However, no existing methodology can simultaneously map QTL for multiple nonnormal traits. In this article we rectify this deficiency by developing a QTL-mapping approach based on generalized estimating equations (GEE). Simulation experiments are used to illustrate the application of the GEE-based approach.  相似文献   

10.
Multiple interval mapping for quantitative trait loci.   总被引:72,自引:0,他引:72  
C H Kao  Z B Zeng  R D Teasdale 《Genetics》1999,152(3):1203-1216
A new statistical method for mapping quantitative trait loci (QTL), called multiple interval mapping (MIM), is presented. It uses multiple marker intervals simultaneously to fit multiple putative QTL directly in the model for mapping QTL. The MIM model is based on Cockerham's model for interpreting genetic parameters and the method of maximum likelihood for estimating genetic parameters. With the MIM approach, the precision and power of QTL mapping could be improved. Also, epistasis between QTL, genotypic values of individuals, and heritabilities of quantitative traits can be readily estimated and analyzed. Using the MIM model, a stepwise selection procedure with likelihood ratio test statistic as a criterion is proposed to identify QTL. This MIM method was applied to a mapping data set of radiata pine on three traits: brown cone number, tree diameter, and branch quality scores. Based on the MIM result, seven, six, and five QTL were detected for the three traits, respectively. The detected QTL individually contributed from approximately 1 to 27% of the total genetic variation. Significant epistasis between four pairs of QTL in two traits was detected, and the four pairs of QTL contributed approximately 10.38 and 14.14% of the total genetic variation. The asymptotic variances of QTL positions and effects were also provided to construct the confidence intervals. The estimated heritabilities were 0.5606, 0.5226, and 0. 3630 for the three traits, respectively. With the estimated QTL effects and positions, the best strategy of marker-assisted selection for trait improvement for a specific purpose and requirement can be explored. The MIM FORTRAN program is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

11.
Association studies are one of the major strategies for identifying genetic factors underlying complex traits. In samples of related individuals, conventional statistical procedures are not valid for testing association, and maximum likelihood (ML) methods have to be used, but they are computationally demanding and are not necessarily robust to violations of their assumptions. Estimating equations (EE) offer an alternative to ML methods, for estimating association parameters in correlated data. We studied through simulations the behavior of EE in a large range of practical situations, including samples of nuclear families of varying sizes and mixtures of related and unrelated individuals. For a quantitative phenotype, the power of the EE test was comparable to that of a conventional ML test and close to the power expected in a sample of unrelated individuals. For a binary phenotype, the power of the EE test decreased with the degree of clustering, as did the power of the ML test. This result might be partly explained by a modeling of the correlations between responses that is less efficient than that in the quantitative case. In small samples (< 50 families), the variance of the EE association parameter tended to be underestimated, leading to an inflation of the type I error. The heterogeneity of cluster size induced a slight loss of efficiency of the EE estimator, by comparison with balanced samples. The major advantages of the EE technique are its computational simplicity and its great flexibility, easily allowing investigation of gene-gene and gene-environment interactions. It constitutes a powerful tool for testing genotype-phenotype association in related individuals.  相似文献   

12.
Epistasis refers to gene interaction effect involving two or more genes. Statistical methods for mapping quantitative trait loci (QTL) with epistasis effects have become available recently. However, little is known about the statistical power and sample size requirements for mapping epistatic QTL using genetic markers. In this study, we developed analytical formulae to calculate the statistical power and sample requirement for detecting each epistasis effect under the F-2 design based on crossing inbred lines. Assuming two unlinked interactive QTL and the same absolute value for all epistasis effects, the heritability of additive × additive (a × a) effect is twice as large as that of additive × dominance (a × d) or dominance × additive (d × a) effect, and is four times as large as that of dominance × dominance (d × d) effect. Consequently, among the four types of epistasis effects involving two loci, ''a × a'' effect is the easiest to detect whereas ''d × d'' effect is the most difficult to detect. The statistical power for detecting ''a × a'' effect is similar to that for detecting dominance effect of a single QTL. The sample size requirements for detecting ''a × d'', ''d × a'' and ''d × d'' are highly sensitive to increased distance between the markers and the interacting QTLs. Therefore, using dense marker coverage is critical to detecting those effects.  相似文献   

13.
Most existing statistical methods for mapping quantitative trait loci (QTL) assume that the phenotype follows a normal distribution and that it is fully observed. However, some phenotypes have skewed distributions and may be censored. This note proposes a simple and efficient approach to QTL detecting for censored traits with the Cox PH model without estimating the baseline hazard function which is "nuisance".  相似文献   

14.
Moore JH 《Human heredity》2001,52(2):113-115
The influence of epistasis on a quantitative trait can reduce the power of linkage analysis to identify the underlying loci. In the present study, we simulated a complex trait derived from a dynamic one-locus gene expression system with epistasis arising from feedback regulation and tested the power of sib-pair linkage analysis methods for detecting the underlying quantitative trait locus (QTL). Using this simple genetic architecture, we demonstrate that the power of sib-pair linkage analysis can be greatly improved if measures of complex trait dynamics are considered.  相似文献   

15.
Design III with Marker Loci   总被引:21,自引:9,他引:12       下载免费PDF全文
C. C. Cockerham  Z. B. Zeng 《Genetics》1996,143(3):1437-1456
Design III is an experimental design originally proposed by R. E. COMSTOCK and H. F. ROBINSON for estimating genetic variances and the average degree of dominance for quantitative trait loci (QTL) and has recently been extended for mapping QTL. In this paper, we first extend COMSTOCK and ROBINSON's analysis of variance to include linkage, two-locus epistasis and the use of F(3) parents. Then we develop the theory and statistical analysis of orthogonal contrasts and contrast X environment interaction for a single marker locus to characterize the effects of QTL. The methods are applied to the maize data of C. W. STUBER. The analyses strongly suggest that there are multiple linked QTL in many chromosomes for several traits examined. QTL effects are largely environment-independent for grain yield, ear height, plant height and ear leaf area and largely environment dependent for days to tassel, grain moisture and ear number. There is significant QTL epistasis. The results are generally in favor of the hypothesis of dominance of favorable genes to explain the observed heterosis in grain yield and other traits, although epistasis could also play an important role and overdominance at individual QTL level can not be ruled out.  相似文献   

16.
The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies.  相似文献   

17.
Han L  Xu S 《Heredity》2008,101(5):453-464
An improved weighted least square (LS) method for quantitative trait loci (QTL) mapping using the estimating equation (EE) algorithm was developed recently. The method is more efficient than both the LS and the weighted LS methods and slightly less efficient than the mixture model maximum likelihood (ML) method. The iteration process of the EE algorithm is implicit. We developed a Fisher-scoring algorithm for the weighted LS method. The iteration process is explicit and easy to program. In addition, the method automatically provides an approximate variance-covariance matrix for the estimated QTL parameters as a by-product of the iteration process. As a consequence, a W-test statistic can be used for testing the significance of QTL. To compare the Fisher scoring algorithm with the expectation maximization (EM)-based ML method, we also developed a slightly simplified method to compute the variance-covariance matrix of the estimated parameters under the EM algorithm.  相似文献   

18.
Y. Eshed  D. Zamir 《Genetics》1996,143(4):1807-1817
Epistasis plays a role in determining the phenotype, yet quantitative trait loci (QTL) mapping has uncovered little evidence for it. To address this apparent contradiction, we analyzed interactions between individual Lycopersicon pennellii chromosome segments introgressed into an otherwise homogeneous genetic background of L. esculentum (cv. M82). Ten different homozygous introgression lines, each containing from 4 to 58 cM of introgressed DNA, were crossed in a half diallele scheme. The 45 derived double heterozygotes were evaluated in the field for four yield-associated traits, along with the 10 single heterozygotes and M82. Of 180 (45 X 4) tested interactions, 28% were epistatic (P < 0.05) on both linear and geometric scales. The detected epistasis was predominately less-than-additive, i.e., the effect of the double heterozygotes was smaller than the sum of the effects of the corresponding single heterozygotes. Epistasis was also found for homozygous linked QTL affecting fruit mass and total soluble solids. Although the frequency of epistasis was high, additivity was the major component in the interaction of pairs of QTL. We propose that the diminishing additivity of QTL effects is amplified when more loci are involved; this mode of epistasis may be an important factor in phenotype canalization and in breeding.  相似文献   

19.
Zou F  Yandell BS  Fine JP 《Genetics》2003,165(3):1599-1605
This article addresses the identification of genetic loci (QTL and elsewhere) that influence nonnormal quantitative traits with focus on experimental crosses. QTL mapping is typically based on the assumption that the traits follow normal distributions, which may not be true in practice. Model-free tests have been proposed. However, nonparametric estimation of genetic effects has not been studied. We propose an estimation procedure based on the linear rank test statistics. The properties of the new procedure are compared with those of traditional likelihood-based interval mapping and regression interval mapping via simulations and a real data example. The results indicate that the nonparametric method is a competitive alternative to the existing parametric methodologies.  相似文献   

20.
Studies in model organisms suggest that epistasis may play an important role in the etiology of complex diseases and traits in humans. With the era of large-scale genome-wide association studies fast approaching, it is important to quantify whether it will be possible to detect interacting loci using realistic sample sizes in humans and to what extent undetected epistasis will adversely affect power to detect association when single-locus approaches are employed. We therefore investigated the power to detect association for an extensive range of two-locus quantitative trait models that incorporated varying degrees of epistasis. We compared the power to detect association using a single-locus model that ignored interaction effects, a full two-locus model that allowed for interactions, and, most important, two two-stage strategies whereby a subset of loci initially identified using single-locus tests were analyzed using the full two-locus model. Despite the penalty introduced by multiple testing, fitting the full two-locus model performed better than single-locus tests for many of the situations considered, particularly when compared with attempts to detect both individual loci. Using a two-stage strategy reduced the computational burden associated with performing an exhaustive two-locus search across the genome but was not as powerful as the exhaustive search when loci interacted. Two-stage approaches also increased the risk of missing interacting loci that contributed little effect at the margins. Based on our extensive simulations, our results suggest that an exhaustive search involving all pairwise combinations of markers across the genome might provide a useful complement to single-locus scans in identifying interacting loci that contribute to moderate proportions of the phenotypic variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号