首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By Ussing's flux chamber method the effect of ATP and acetylcholine (ACh) on the sodium transport was studied in bullfrog colon. The results obtained are as follows; 1. ATP added to the mucosal medium caused biphasic changes in the transmural potential difference (P.D.) and short-circuit current (S.C.C.), although serosal ATP was ineffective. After an initial rapid and transient rise, both the P.D. and S.C.C. increased in parallel to reach a peak in about 10 min suggesting that the tissue conductance is little affected by ATP. Addition of ouabain to the serosal fluid depressed both the P.D. and S.C.C. and abolished the electrical responses to ATP. The application of ouabain to the mucosal side did not cause any significant depression. These results can be explained in terms of stimulation of sodium pump by ATP added to the mucosal medium. 2. ACh added to either the mucosal or the serosal medium caused increased in the P.D. and the S.C.C. The serosal application was more effective than the mucosal application. The increase in S.C.C. was more remarkable than that in the P.D., indicating an increase in the tissue conductance. It is suggested that ACh stimulates ion transport systems by changing the membrane permeability of the colon.  相似文献   

2.
Summary A study has been made of the steady-state fluxes of barbituric acid, six of its substituted derivatives, and 5,5-dimethyloxazolidinedione (DMO) across the wall of rat jejunumin vitro. For each of the compounds tested the mucosal (M) to serosal (S) flux was significantly larger than theS toM flux. BothM toS andS toM fluxes increased linearly with concentration, and the transport of one acid was not influenced by the presence of a tenfold greater concentration of a second heterocyclic acid. The fluxes decreased as the pH of the incubation saline was increased, but neither theM toS, nor theS toM fluxes could be described in terms of simple nonionic diffusion. It was found that the relation between the flux ratios of the transported acids and their pK a values could be described by an equation derived from consideration of the transport of a weak acid in a series three compartment system, and it has been concluded that the three compartment system provides a good working hypothesis for the mechanism of heterocyclic acid transport across rat jejunum. It was found that the best fit of the theoretical curve to the experimental data was obtained when the ratio of permeabilities to the ionized and nonionized forms of a weak acid at one of the barriers was assigned the value 5×10–1. It is suggested that this value may be characteristic of a noncellular restriction to diffusion, such as a layer of connective tissue, and substantiates previous suggestion that the intermediate compartment of the intestinal three compartment system is a component of the sub-epithelial extracellular space.  相似文献   

3.
Fluxes of D-xylose-1-C14 (xylose) across the wall of the isolated intestine of the bullfrog were studied. When sodium was the principal cation in the mucosal bathing fluid, the transport rate of xylose from the mucosa to the serosa was about 5 times greater than the transport rate from the serosa to the mucosa, indicating an active intestinal transport for this sugar. With potassium as the principal cation on the mucosal side, the transport rate of xylose from the mucosal to the serosal compartment is reduced about 5 to 6 times without appreciable change in the serosal to mucosal transport. The asymmetry was also considerably reduced when ouabain was added to the mucosal and serosal compartments. The data confirm the in vitro and in vivo observations indicating active transport of xylose and are also in accord with the earlier findings that active transport of sugars in the intestine is dependent upon the presence of sodium ions in the mucosal compartment and is inhibited by cardioactive steroids. Since the chemical constitution of xylose does not meet the requirements which were hitherto considered necessary for active transport of sugars in the intestine, this structural requirement has to be revised.  相似文献   

4.
The symmetry of osmotic conductivity of the canine tracheal epithelial cells was examined in vitro. When an osmotic load of 100 mosM sucrose was added to the serosal bathing solution, no change in the transepithelial potential difference was observed in 15 tissue preparations. In contrast, when the same osmotic load was added to the mucosal bathing solution, there was a rapid decrease in the transepithelial potential difference of 3.9 +/- 0.5 mV (n = 23); ouabain (10(-4) M) eliminated this change. Tissues that had been exposed to the osmotic load added to either the mucosal or serosal side were compared with the control using light and electron microscopy. When the osmotic load was added to the mucosal fluid, there was no change in the nuclear-to-cytoplasmic area ratio of the cell types examined. However, when the same osmotic load was added to the serosal fluid, a marked increase in the nuclear-to-cytoplasmic area ratio of the ciliated cells was observed. This finding indicated cell shrinkage. Dilution potentials measured by substituting NaCl with mannitol also showed asymmetry. The morphological features are probably caused by differences in the osmotic conductivity (Lp) of the basolateral and apical cell membranes, with the Lp of the apical membrane being less than that of the basolateral membrane. The basis for osmotically induced potentials remained undetermined.  相似文献   

5.
Addition of 446 μM prostaglandin E1 (PGE1) to the serosal medium of isolated short-circuited bullfrog small intestine elicited small increases in transmural potential difference and short-circuit current while addition of PGE1 to the mucosal medium caused no change in the electrical parameters. Addition of 100 μM indomethacin to the mucosal medium inhibited both potential difference and short-circuit current with a resultant increase in steady-state tissue resistance. In the presence of mucosal 100 μM indomethacin, serosal 60 μM PGE1 markedly stimulated transmural potential difference and short-circuit current with a resultant decrease in steady-state tissue resistance. Serosal arachidonic acid (330μM) stimulated transmural potential difference and short-circuit current and this effect was abolished by the addition of 100 μM indomethacin to the mucosal medium. Serosal 60 μM PGE1 only stimulated the M (mucosa) → S (serosa) unidirectional flux of sodium. These results strongly suggest that the PGE1 action is mediated either via a series of metabolic reactions which possibly increase the permeability of the mucosal membrane to sodium or via direct stimulation of rheogenic sodium pump activity.  相似文献   

6.
Bernick EP  Stiffler DF 《Peptides》2000,21(6):779-783
A possible role for the peptide hormone guanylin was investigated in frog skin (Rana pipiens) epithelium. Sodium and chloride fluxes in response to this peptide were evaluated in Ussing-type chambers. Net and unidirectional Na(+) fluxes were measured by using (22)Na(+) and atomic absorption analysis of total [Na(+)], whereas net Cl(-) fluxes were measured by using electrometric titration for [Cl(-)]. Mucosal application of guanylin (0.5-2.0 micromol/l) caused marked increases in serosal to mucosal net flux and efflux of Na(+). Serosal application of guanylin over the same dose range caused similar large increases in net serosal to mucosal (S-->M) Na(+) and Cl(-) flux as well as Na(+) efflux. Responses of Na(+) influx were small and inconsistent. When frog skin was bathed on the serosal side with Cl(-)-free Ringer's solution mucosal application of guanylin stimulated large efflux and S-->M net fluxes of Na(+). Serosal treatment yielded large Na(+) effluxes and S-->M Na(+) and Cl(-) net fluxes. When frog skin serosal surfaces were bathed with Na(+)- free Ringer's solution mucosal guanylin treatment had no effect but serosal treatment produced large S-->M Cl(-) net fluxes.  相似文献   

7.
Addition of 446 micron prostaglandin E1 (PGE1) to the serosal medium of isolated short-circuited bullfrog small intestine elicited small increases transmural potential difference and short-circuit current while addition of PGE1 to the mucosal medium caused no change in the electrical parameters. Addition of 100 micron indomethacin to the mucosal medium inhibited both potential difference and short-circuit current with a resultant increase in steady-state tissue resistance. In the presence of mucosal 100 micron indomethacin, serosal 60 micron PGE1 markedly stimulated transmural potential difference and short-circuit current with a resultant decrease in steady-state tissue resistance. Serosal arachidonic acid (330 micron) stimulated transmural potential difference and short-circuit current and this effect was abolished by the addition of 100 micron indomethacin to the mucosal medium. Serosal 60 micron PGE1 only stimulated the M (mucosa) leads to S (serosa) unidirectional flux of sodium. These results strongly suggest that the PGE1 action is mediated either via a series of metabolic reactions which possibly increase the permeability of the mucosal membrane to sodium or via direct stimulation of rheogenic sodium pump activity.  相似文献   

8.
K A Hubel  K S Renquist 《Life sciences》1988,42(18):1781-1788
Ouabain, when added to fluid bathing rabbit ileal mucosa mounted in a flux chamber, transiently increases short circuit current, implying a paradoxical secretory response. To determine the cause of this change, we studied unidirectional fluxes of 36Cl and 23Na and the effects of ion substitution, of reduced Ca concentration, verapamil, tetrodotoxin and atropine. Ouabain 0.1 mM, transiently increased the serosal to mucosal flux of Cl and Na, increased Isc and PD and reduced ion conductance. The Isc response to ouabain was diminished by reducing the bath fluid concentration of Cl, of Ca, and by adding verapamil. Tetrodotoxin both delayed and reduced the maximal Isc response; atropine had no effect. We conclude that ouabain acts by releasing a neurotransmitter of unknown identity and by increasing the serosal to mucosal flux of Cl.  相似文献   

9.
Experiments were performed to investigate whether the fluid transported across the small intestine is isoosmotic with the mucosal solution when the active transport of glucose is partially inhibited. Everted hamster mid small intestine was incubated in one of the following four mucosal solutions: (1) Isotonic control, Krebs-Ringer bicarbonate solution containing 10 mM glucose (KRBSG), (2) Isotonic with phlorizin, KRBSG + 5X10-5 M phlorizin, (3) Hypertonic control, KRBSG + 50 mM mannitol, (4) Hypertonic with phlorizin, KRBSG + 50 MM mannitol + 5x10-5 M phlorizin. The serosal surface of the intestine was not bathed. Results indicate that the transported fluid was always isoosmotic with any of the mucosal solutions used. When the mucosal solution was made hypertonic with mannitol, the concentration of glucose and electrolytes in the absorbate increased, and as a result, the absorbate became hypertonic and isoosmotic with the mucosal solution. The presence of phlorizin either in the isotonic or in the hypertonic mucosal solution decreased the glucose concentration of the absorbate, but the transported fluid became isoosmotic with the mucosal solution due to a higher concentration of Na, K, and their associated anions. Phlorizin caused a decrease in the transmural potential difference. In spite of this, the presence of this glucoside in the mucosal solution increased the transport of sodium in relation to glucose transport. It is suggested that, at the concentrations used, phlorizin inhibits sodium movement through the electrogenic pathway, but increases the transport of this ion through the non-electrogenic route. This increase in neutral sodium transport seems to compensate for the low concentration of glucose in the absorbate, so that the absorbate becomes isoosmotic with the mucosal solution whether the latter is isotonic or hypertonic. It is suggested further that isoosmotic transport of fluid is an inherent property of the small intestine and that there may be an osmoregulatory mechanism in the gut which controls this process.  相似文献   

10.
Toad bladders sacs were placed inside quartz cuvettes. When fura-2 AM was added to the mucosal compartment, low temperature (4 degrees C) almost completely blocked the transepithelial transfer of fluorescence observed at 20 degrees C (20 degrees C = 371 +/- 56, 4 degrees C = 29 +/- 29 fluorescence intensity in arbitrary units (FIAU), excitation at 340 nm, emission at 510 nm). Simultaneously, fluorescence accumulation inside the tissue was significantly higher (20 degrees C = 25 +/- 5, 4 degrees C = 91 +/- 24% increase on basal levels (%IBL)). When fura-2 AM was added to the serosal side, low temperature also reduced the serosal to mucosal transfer (20 degrees C = 149 +/- 36, 4 degrees C = 61 +/- 35 FIAU). Nevertheless, in this situation tissue accumulation, that was significantly higher that the one observed when fura-2 AM was added to the mucosal side, was reduced at low temperature (20 degrees C = 300 +/- 30, 4 degrees C = 48 +/- 7 %IBL). Spectral analysis of the mucosal and serosal compartments indicated that free fura-2 was transferred from the intracellular to the serosal compartment, but not to the mucosal one. These results indicate that fura-2 appears as a useful tool to evaluate the cellular distribution and traffic of polycyclic charged and non-charged molecules.  相似文献   

11.
A compartmental model of toad bladder sodium content has been developed, whereby it is possible to measure the four unidirectional fluxes across the opposite faces of the transport compartment, as well as the amount of sodium in the compartment. 24Na is added to the mucosal medium of a short-circuited bladder mounted between halves of a chamber in which the fluid is stirred by rotating impellers. After a steady state is reached, nonradioactive medium is flushed through both sides of the chamber, collected, and counted. The data from each chamber are fitted to sums of exponentials and interpreted in terms of conventional compartmental analysis. Three exponentials are required, with half-times of 0.2, 2.2, and 14.0 min. It is shown that the first of these represents chamber washout, the second the transport pool, and the third a tissue compartment which is not involved in active sodium transport and which does not communicate with the transport pool. The second compartment contains 10.5 µEq of sodium per 100 mg dry weight, an amount equal to approximately 30% of total tissue sodium. The results also indicate, as expected from electrophysiological data, that the mucosal-facing side of the transport compartment is over 10 times as permeable to sodium as the serosal, or pump, side.  相似文献   

12.
Summary Recent results from this laboratory have indicated the existence of two potassium compartments in the isolated toad bladder. Only one of these, containing less than 10% of total intracellular potassium, appears to be related to the sodium transport system, since potassium influx at the serosal border of this compartment is coupled to the sodium efflux which occurs there. Ouabain, which specifically inhibits serosal sodium exit, has no effect on potassium fluxes and compartment sizes in bladders mounted in normal (2.5mm K) Ringer's solution. However, in the presence of this inhibitor, removal of serosal potassium results in a significant decrease in the rate coefficient for potassium efflux into the serosal medium, while an increase in serosal potassium results in a significant rise in this parameter, which appears to saturate at approximately 5mm K. This sensitivity to serosal potassium is seen neither in the absence of ouabain nor when the sodium pump is inactivated by removal of sodium from the mucosal medium. Furosemide, which also inhibits the sodium transport system, both inhibits potassium transport parameters in normal Ringer's and abolishes the potassium-sensitive potassium efflux seen in the presence of ouabain. Thus, the Na–K pump appears to operate as a K–K exchanger when the sodium system is inhibited by ouabain; this K–K exchange mechanism is inhibited by furosemide. One explanation for these results is that ouabain effects an alteration in the affinities of the transport system for sodium and potassium.  相似文献   

13.
The association between Cl-, HCO3- and H+ transported by toad bladders was investigated. Net mucosal to serosal Cl- transport by Colombian toad bladders was stimulated by incubation in HCO3- free solutions. In addition, when Colombian or Dominican toad bladders were exposed to low HCO3- concentrations on the mucosal side and 25 mM HCO3- on the serosal side, net mucosal leads to serosal Cl- transport was induced. Neither acetazolamide nor cyanide significantly inhibited Cl- transport under these conditions. The presence of a pH gradient, more acid on the mucosal side, also induced net mucosal leads to serosal Cl- transport. The results suggest that Cl- transport by toad bladders may occur by exchange with HCO3- or OH-; this process may not require carbonic anhydrase or oxidative metabolism. The Cl- transport by toad bladders is qualitatively different from the electrogenic Cl- transport of the thick limb of Henle's loop, but may be similar to a process which occurs in other portions of the nephron.  相似文献   

14.
The effects of theophylline and dibutyryl cyclic AMP, on in vitro unidirectional galactose fluxes across the mucosal and serosal borders of rabbit ileum have been studied. 1. When Ringer [galactose] = 2mM, theophylline and dibutyryl cyclic AMP reduce both mucosal-serosal and serosal-mucosal galactose flux by approx. 50%. The K1 for theophylline inhibition of flux in both directions is 2 mM. 1 mM dibutyryl cyclic AMP elicits a maximal inhibitory response. Concurrent with the inhibition in transmural galactose fluxes, theophylline and dibutyryl cyclic AMP increase the tissue accumulation of [galactose] and the specific-activity ratio R of 3H : 14C-labelled galactose coming from the mucosal and serosal solutions respectively. It is deduced that theophylline and dibutyryl cyclic AMP are without effect on the mucosal unidirectional permeability to galactose but cause a symmetrical reduction in serosal entry and exit permeability. 2. Reduction in the asymmetry of the mucosal border to galactose by reducing Ringer [Na], raising Ringer [galctose] or adding ouabain reduces the theophylline-dependent increase in galactose accumulation. 3. Hypertonicity in the serosal solution increases the permeability of the serosal border to galactose and reduces tissue galactose accumulation. Serosal hypertonicity partially reverses the theophylline-depedent effects on galactose transport. Replacing Ringer chloride by sulphate abolishes the theophylline-dependent effects on galactose transport. 4. It is considered that the theophylline-dependent increase in galactose accumulation results from the reduction in serosal permeability. This is shown to be a quantitatively consistent inference. 5. Further support for the view that the asymmetric transport of galactose in rabbit ileum results from convective-diffusion is presented.  相似文献   

15.
The determinants of weak electrolyte influx into everted segments of rat small intestine have been studied. Preliminary experiments showed that the observed influxes could be described as unidirectional, diffusional fluxes of the nonionized compound uncomplicated by a parallel ionic component. It is shown that the determinants of weak electrolyte influx in this situation may be described in terms of the resistance of the unstirred layer to movement from the bulk phase to the cell surface, the degree of ionization of the weak electrolyte at the cell surface, and the cellular permeability to the nonionized weak electrolyte. Quantitative considerations indicated that the unstirred layer was totally rate-limiting in the cases of some poorly ionized, or highly permeant compounds, but the unstirred layer was not totally rate limiting for most of the compounds studied. Calculation of cellular permeabilities for the nonionized forms of weak electrolytes required assumptions to be made concerning the pH value in the surface fluid layer. A uniform set of permeability data including both weak acids and weak bases was obtained only when it was assumed that the pH in the surface fluid layer was equal to that in the bulk phase, and it was concluded that these studies do not support the concept of a microclimate of distinctive pH at the epithelial surface as a determinant of weak electrolyte transport.  相似文献   

16.
The crustacean intestine and hepatopancreas display a variety of solute transport mechanisms for transmembrane transfer of dietary contents from lumen to epithelial cytosol. An in vitro intestinal perfusion apparatus was used to characterize mucosal to serosoal (MS) and serosal to mucosal (SM) Zn(2+) -dependent (3)H-L-leucine transport by the intestine of the American lobster, Homarus americanus. Transmural 20?μM MS (3)H-L-leucine fluxes across lobster intestine were a hyperbolic function of luminal zinc concentration (1-50?μM) following Michaelis-Menten kinetics (K(m) = 2.67 ± 0.74?μM; J(max) = 19.56 ± 2.22?pmol/cm(2) ×min). Transmural 20?μM SM (3)H-L-leucine fluxes were not affected by serosal zinc, resulting in a highly significant stimulation of net amino acid transfer to the blood by luminal metal. MS fluxes of 20?μM (3)H-L-leucine were also hyperbolic functions of luminal [Cu(2+)], [Mn(2+)], [Na(+)], and [H(+)]. MS flux of (3)H-L-leucine was a sigmoidal function of luminal [L-leucine] and was stimulated by the addition of 20?μM luminal zinc at both pH 7.0 and 5.5. A greater enhanced amino acid transport occurred at the lower pH 5.5. MS flux of 20?μM (3)H-L-leucine in the presence of 20?μM zinc was significantly inhibited by addition of 100?μM luminal glycylsarcosine, and MS flux of 20?μM (3)H-glycylsarcosine was inhibited by 100?μM L-leucine in the presence of 20?μM zinc. Results suggest that (3)H-L-leucine and metals form a complex (e.g., Leu-Zn-Leu] that may functionally mimic dipeptides and use a dipeptide-like transporter during MS fluxes as suggested for fish and mammals.  相似文献   

17.
18.
The fluid and solute transport properties of pleural tissue were studied by using specimens of intact visceral and parietal pleura from adult sheep lungs. The samples were transferred to the laboratory in a Krebs-Ringer solution at 4 degrees C within 1 h from the death of the animal. The pleura was then mounted as a planar sheet in a Ussing-type chamber. The results that are presented in this study are the means of six different experiments. The spontaneous potential difference and the inhibitory effects of sodium nitroprusside (SNP), ouabain, and amiloride on transepithelial electrical resistance (R(TE)) were measured. The spontaneous potential difference across parietal pleura was 0.5 +/- 0.1 mV, whereas that across visceral pleura was 0.4 +/- 0.1 mV. R(TE) of both pleura was very low: 22.02 +/- 4.1 Omega. cm2 for visceral pleura and 22.02 +/- 3.5 Omega. cm2 for parietal pleura. There was an increase in the R(TE) when SNP was added to the serosal bathing solution of parietal pleura and to the serosal or mucosal bathing solution in visceral pleura. The same was observed when ouabain was added to the mucosal surface of visceral pleura and to either the mucosal or serosal surface of parietal pleura. Furthermore, there was an increase in R(TE) when amiloride was added to the serosal bathing solution of parietal pleura. Consequently, the sheep pleura appears to play a role in the fluid and solute transport between the pleural capillaries and the pleural space. There results suggest that there is a Na+ and K+ transport across both the visceral and parietal pleura.  相似文献   

19.
In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus gallbladder epithelium.  相似文献   

20.
Lysine Transport across Isolated Rabbit Ileum   总被引:7,自引:2,他引:5       下载免费PDF全文
Lysine transport by in vitro distal rabbit ileum has been investigated by determining (a) transmural fluxes across short-circuited segments of the tissue; (b) accumulation by mucosal strips; and (c) influx from the mucosal solution across the brush border into the epithelium. Net transmural flux of lysine is considerably smaller than that of alanine. However, lysine influx across the brush border and lysine accumulation by mucosal strips are quantitatively comparable to alanine influx and accumulation. Evidence is presented that the "low transport capacity" of rabbit ileum for lysine is due to: (a) a carrier-mediated process responsible for efflux of lysine out of the cell across the serosal and/or lateral membranes that is characterized by a low maximal velocity; and (b) a high "backflux" of lysine out of the cell across the mucosal membrane. A possible explanation for the latter observation is discussed with reference to the relatively low Na dependence of lysine transport across the intestinal brush border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号