首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH dependence of the conformation of cytochrome a in bovine cytochrome c oxidase has been studied by second derivative absorption spectroscopy. At neutral pH, the second derivative spectra of the cyanide-inhibited fully reduced and mixed valence enzyme display two Soret electronic transitions, at 443 and 451 nm, associated with cytochrome a. As the pH is lowered these two bands collapse into a single transition at approximately 444 nm. pH titration of the cyanide-inhibited mixed valence enzyme suggests that the transition from the two-band to one-band spectrum obeys the Henderson Hasselbalch relationship for a single protonation event with a transition pKa of 6.6 +/- 0.1. No pH dependence is observed for the spectra of the fully reduced unliganded or CO-inhibited enzyme. Tryptophan fluorescence spectra of the enzyme indicate that no major disruption of protein structure occurs in the pH range 5.5-8.5 used in this study. Resonance Raman spectroscopy indicates that the cytochrome a3 chromophore remains in its ferric, cyanide-bound form in the mixed valence enzyme throughout the pH range used here. These data indicate that the transition observed by second derivative spectroscopy is not due simply to pH-induced protein denaturation or disruption of the cytochrome a3 iron-CN bond. The pH dependence observed here is in good agreement with those observed earlier for the midpoint reduction potential of cytochrome a and for the conformational transition associated with energy transduction in the proton pumping model of Malmstr?m (Malmstr?m, B. G. (1990) Arch. Biochem. Biophys. 280, 233-241). These results are discussed in terms of a model for allosteric communication between cytochrome a and the binuclear ligand binding center of the enzyme that is mediated by ionization of a single group within the protein.  相似文献   

2.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

3.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

4.
Second derivative absorption spectra are reported for the aa3-cytochrome c oxidase from bovine cardiac mitochondria, the aa3-600 ubiquinol oxidase from Bacillus subtilis, the ba3-cytochrome c oxidase from Thermus thermophilis, and the aco-cytochrome c oxidase from Bacillus YN-2000. Together these enzymes provide a range of cofactor combinations that allow us to unequivocally identify the origin of the 450-nm absorption band of the terminal oxidases as the 6-coordinate low-spin heme, cytochrome a. The spectrum of the aco-cytochrome c oxidase further establishes that the split Soret band of cytochrome a, with features at 443 and 450 nm, is common to all forms of the enzyme containing ferrocytochrome a and does not depend on ligand occupancy at the other heme cofactor as previously suggested. To test the universality of this Soret band splitting for 6-coordinate low-spin heme A systems, we have reconstituted purified heme A with the apo forms of the heme binding proteins, hemopexin, histidine-proline-rich glycoprotein and the H64V/V68H double mutant of human myoglobin. All 3 proteins bound the heme A as a (bis)histidine complex, as judged by optical and resonance Raman spectroscopy. In the ferroheme A forms, none of these proteins displayed evidence of Soret band splitting. Heme A-(bis)imidazole in aqueous detergent solution likewise failed to display Soret band splitting. When the cyanide-inhibited mixed-valence form of the bovine enzyme was partially denatured by chemical or thermal means, the split Soret transition of cytochrome a collapsed into a single band at 443 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   

6.
Reactions of mercaptans with cytochrome c oxidase and cytochrome c   总被引:2,自引:0,他引:2  
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 microM, respectively. 2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme. 3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M-1 . s-1 and a dissociation constant Kd of 3.9 mM. 4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M-1 . s-1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes. 5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome alpha 3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

7.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

8.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

9.
The inhibition of cytochrome c oxidase by cyanide, starting either with the resting or the pulsed enzyme, was studied by rapid-freeze quenching followed by quantitative e.p.r. It is found that a partial reduction of cytochrome oxidase by transfer of 2 electron equivalents from ferrocytochrome c to cytochrome a and CuA will induce a transition from a closed to an open enzyme conformation, rendering the cytochrome a3-CuB site accessible for cyanide binding, possibly as a bridging ligand. A heterogeneity in the enzyme is observed in that an e.p.r. signal from the cytochrome a3 3+-HCN complex is only found in 20% of the molecules, whereas the remaining cyanide-bound a3-CuB sites are e.p.r.-silent.  相似文献   

10.
The oxidation of ferrocytochrome c mediated by cytochrome c oxidase was investigated in the presence of ferricytochrome c, trifluoroacetyl-cytochrome c, the heme fragments Hse65-[1-65] and Hse80-[1-80] and their respective porphyrin derivatives, as well as carboxymethylated apoprotein and related fragments, polycations, salts and neutral additives. The inhibition of the redox reaction by salts and neutral molecules, even if in theoretical agreement with their effect on electrostatic interactions, may alternatively be interpreted in terms of hydrophobicity. The latter can account for the inhibitory properties of trifluoroacetylated ferricytochrome c, similar to those of ferricytochrome c. On the assumption that the inhibitory properties of some of the investigated derivatives monitor their binding affinities to the cytochrome c oxidase at the cytochrome c binding sites, the experimental results do not confirm a primarily electrostatic character for the cytochrome c/cytochrome c oxidase association process. Strong indication was found that the cytochrome c C-terminal sequence is critically involved in the complex formation. Conformational studies by circular dichroism measurements and IR spectroscopy in solution and in solid state respectively, show that some of the derivatives examined may possibly acqkuire in the binding process to the oxidase, as secondary structure similar to that present in the native cytochrome c.  相似文献   

11.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

12.
R A Copeland  P A Smith  S I Chan 《Biochemistry》1987,26(23):7311-7316
When cytochrome c oxidase is reduced, it undergoes a conformational change that shifts its tryptophan fluorescence maximum from 329 to 345 nm. Studies of ligand-bound, mixed-valence forms of the enzyme show that this conformational change is dependent on the redox state of the low-potential metal centers, cytochrome a and CuA. The intrinsic fluorescence of oxidized cytochrome c oxidase is not effectively quenched by Cs+; however, marked quenching is observed for the reduced enzyme with a Stern-Volmer constant of 0.69. These observations, together with the significant red shift of the emission maximum, suggest that the emitting tryptophan residues are becoming more solvent accessible in the reduced enzyme. Stopped-flow spectra show that this conformational transition occurs rapidly upon reduction of the low-potential sites with a pseudo-first-order rate constant of 4.07 +/- 0.40 s-1. The conformational change monitored by tryptophan fluorescence is suggested to be related to the previously proposed "open-closed" transition of cytochrome c oxidase. Reductive titration of the cyanide-inhibited enzyme with ferrocytochrome c shows a nonlinear response of the fluorescence shift to added electron equivalents. A theoretical treatment of the reduction of the two interacting sites of the cyanide-inhibited enzyme has been developed that gives the population of each redox state as a function of the total number of electrons accepted by the enzyme. This treatment depends on two parameters: the difference in redox potential between the two metals and the redox interaction between the redox centers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

14.
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrate-ferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the 'association' rate but also by increasing the 'dissociation' rate for bound cytochrome c converting the 'primary' (T) site at high salt concentrations into a site similar kinetically to the 'secondary' (L) site at low ionic strength. A finite Km of 170 microM at very high ionic strength indicates a ratio of K infinity m/K 0 M of about 5000. It is proposed that anions either modify the E10 of cytochrome C bound at the primary (T) site of that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

15.
The reaction of a reduced cytochrome oxidase system consisting of beef heart cytochrome oxidase, cytochrome c, and ascorbate with molecular oxygen was kinetically and thermodynamically investigated using a stopped-flow, rapid wavelength-scanning technique. Processes for oxidation of ferrocytochrome a, bound ferrocytochrome c, and free ferrocytochrome c have been identified, and their rate constants have been determined. Values of the activation energy for these reactions indicate that the oxidation of bound ferrocytochrome c is a simple chemical electron-transfer process and that oxidations of ferrocytochrome a and free ferrocytochrome c are complex processes involving changes in protein conformation.  相似文献   

16.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational "strain" in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

17.
B Errede  M D Kamen 《Biochemistry》1978,17(6):1015-1027
Kinetic studies of the reactions of selected eukaryotic and prokaryotic cytochromes c with mitochondrial cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase (EC 1.9.3.1) using a standardized complex IV preparation from beef heart are reported. Data on reactions with NADH-linked cytochrome c reductase (complexes I and III) are included. The concentration ranges employed provide a basis for quantitative demonstration of a general rate law applicable to oxidase reactions of cytochrome c of greatly differing reactivities. Results are interpreted on the basis of a modified Minnaert mechanism (Minnaert, K. (1961) Biochim. Biophys. Acta 50, 23), assuming productive complex formation between cytochrome c and free oxidase in addition to further complex binding of a second cytochrome c molecule to the initially formed oxidase complex. Kinetic constants so obtained are consistent with the assumption that binding is the dominant parameter in reactivity, and can be rationalized most simply on this basis.  相似文献   

18.
Cytochrome c oxidase isolated from ox heart forms a complex in the presence of millimolar concentrations of CO with absorption bands at 606, 565 and 435 nm (difference spectrum), distinct from both ferrocytochrome a and the classical 590nm carbon-monoxyferrocytochrome a3. This species, which closely resembles Compound C, the derivative formed on photolysis and oxygenation of mixed-valence cytochrome a3+a32+CO, may represent a cytochrome a32+CO complex in which the associated ('invisible') copper is still oxidized.  相似文献   

19.
The effect of nitrite on cytochrome oxidase   总被引:1,自引:0,他引:1  
Nitrite inhibits the oxygen uptake by the system ferrocytochrome c-cytochrome oxidase with Ki = 1.5 mM. In the absence of ferrocytochrome c the oxygen uptake by cytochrome oxidase in the presence of nitrite was observed indicating that the enzyme has some nitrite oxidase activity. Nitrite induces changes in optical difference spectra of cytochrome oxidase and, in particular, the formation of the transient band at 607 nm. The reciprocal relation was observed between the intensity of this band and the rate of the oxygen uptake by cytochrome oxidase. This means that the form of the enzyme with this band does not involved in the nitrite oxidase activity. It is suggested that the nitrite oxidase activity relates to the oxygen binding site rather than the cytochrome c binding site of the enzyme.  相似文献   

20.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号