首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Epithelial cells of the airways can, under pathological conditions, undergo squamous metaplasia. The accumulation of cholesterol sulfate has recently been described as a new marker for squamous cell differentiation in rabbit tracheal epithelial cells. We now report that normal human bronchial epithelial cells in culture metabolically incorporated [35S]-sulfate and [3H]-mevalonate into material indistinguishable from cholesterol sulfate by the criteria of solubility in organic solvents, behavior on ion-exchange chromatography, susceptibility to solvolysis, and behavior on thin-layer chromatography before and after solvolysis. The accumulation of cholesterol [35S]-sulfate correlated well with squamous cell differentiation (as measured by cross-linked envelope formation), which occurred when the cells reached confluency. The increase in the level of cholesterol sulfate could be inhibited by the inclusion of retinoic acid in the cell-culture medium. The addition of phorbol-12-myristate-13-acetate or the presence of high Ca2+ concentration in the medium stimulated the accumulation of cholesterol sulfate. An increased activity of cholesterol sulfotransferase seems to account for the cholesterol sulfate accumulation. The original observation of cholesterol sulfate accumulation during squamous differentiation thus extends across species lines and strengthens the suggestion that the cholesterol sulfate may play an important role in this type of differentiation. Moreover, cholesterol sulfate provides a sensitive biochemical marker to study this pathway of differentiation of human bronchial epithelial cells.  相似文献   

2.
In this paper we examined the effects of transforming growth factor beta (TGF beta) on the proliferation and differentiation of rabbit tracheal epithelial cells in primary culture. Treatment of these cells with TGF beta inhibits cell proliferation in a time- and dose-dependent manner; concentrations as low as 1 pM are able to inhibit cell growth. Concomitantly, TGF beta causes cells to accumulate in the G0/G1 phase of the cell cycle and a sharp reduction in the ability of the cells to form colonies after subculture at clonal density. These results indicate that TGF beta induces terminal cell division in these cells. The inhibition of cell growth is accompanied by changes in cell morphology and a stimulation of the formation of cross-linked envelopes. TGF beta enhances the levels of transglutaminase activity and cholesterol sulfate, two markers of squamous differentiation. Our results indicate that TGF beta induces terminal squamous cell differentiation in rabbit tracheal epithelial cells. Retinoic acid (RA) does not affect the commitment to terminal cell division induced by TGF beta, but inhibits the expression of the squamous phenotype. Growth of normal human bronchial epithelial cells was affected by TGF beta in a way similar to that of rabbit tracheal epithelial cells. Several carcinoma cell lines tested were quite resistant to TGF beta, whereas growth of one carcinoma cell line was stimulated by TGF beta. These results indicate that a modified response to TGF beta could be one mechanism involved in the aberrant growth control of malignant cells.  相似文献   

3.
Rabbit tracheal epithelial (RbTE) cells in culture undergo terminal squamous differentiation characterized by enhanced transglutaminase activity, synthesis of specific keratins, and the formation of cross-linked envelopes. The expression of each of these markers of differentiation occurs spontaneously after the cells reach confluency, but this expression can be inhibited by the inclusion of retinoids in the extracellular medium. In the current work, we demonstrate that radioactive sulfate incorporation into the organic phase of a CHCl3/CH3OH (2:1) extract of RbTE cells increases 50- to 100-fold upon differentiation and that this accumulation can be completely blocked by the inclusion of retinoic acid in the culture medium. By the techniques of specific metabolic radiolabeling, thin layer chromatography, gas chromatography-mass spectrometry, and fast atom bombardment-mass spectrometry, the sulfated amphiphile was shown to be cholesterol 3-sulfate. Cholesterol sulfate accumulation begins 1 to 2 days after the RbTE cells reach the stationary phase of growth which is the same time that other differentiated functions begin to be expressed. The inhibition of accumulation by retinoic acid is concentration-dependent and half-maximal at 5 X 10(-11) M. The relative efficacy of a series of synthetic retinoids in inhibiting cholesterol sulfate accumulation correlated with their binding to the cellular retinoic acid-binding protein. These data taken together indicate that cholesterol sulfate is a marker of squamous differentiation in RbTE cells in culture. Possible biochemical mechanisms of the regulation of cholesterol sulfate levels during differentiation are discussed.  相似文献   

4.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

5.
In this paper we examined the effects of transforming growth factor β (TGFβ) on the proliferation and differentiation of rabbit tracheal epithelial cells in primary culture. Treatment of these cells with TGFβ inhibits cell proliferation in a time- and dose-dependent manner; concentrations as low as 1 pM are able to inhibit cell growth. Concomitantly, TGFβ causes cells to accumulate in the G0/G1 phase of the cell cycle and a sharp reduction in the ability of the cells to form colonies after subculture at clonal density. These results indicate that TGFβ induces terminal cell division in these cells. The inhibition of cell growth is accompanied by changes in cell morphology and a stimulation of the formation of cross-linked envelopes. TGFβ enhances the levels of transglutaminase activity and cholesterol sulfate, two markers of squamous differentiation. Our results indicate that TGFβ induces terminal squamous cell differentiation in rabbit tracheal epithelial cells. Retinoic acid (RA) does not affect the commitment to terminal cell division induced by TGFβ, but inhibits the expression of the squamous phenotype. Growth of normal human bronchial epithelial cells was affected by TGFβ in a way similar to that of rabbit tracheal epithelial cells. Several carcinoma cell lines tested were quite resistant to TGFβ, whereas growth of one carcinoma cell line was stimulated by TGFβ. These results indicate that a modified response to TGFβ could be one mechanism involved in the aberrant growth control of malignant cells.  相似文献   

6.
7.
Previous work has demonstrated that the activity of the enzyme cholesterol sulfotransferase is rapidly and dramatically increased upon squamous differentiation of a variety of epithelial cells in culture, including epidermal keratinocytes. As a step toward understanding the molecular mechanisms underlying this differentiation-related change, we now report the partial purification and characterization of this enzyme activity from rat skin. Supernatant solutions from rat skin homogenates were subjected to a series of column chromatography steps including anion exchange, gel filtration, chromatofocusing and hydrophobic interaction chromatography. The purification procedure resulted in cholesterol sulfotransferase activity purified 2,700-fold with a 11% recovery. The most purified preparation yielded a major Coomassie blue-stained band on denaturing polyacrylamide gel electrophoresis of an apparent molecular weight (MW) of 40,000 Da. Photoaffinity labeling with the donor substrate, 3'-phosphoadenosine-5'-phospho-[35S]-sulfate resulted in a single radiolabeled protein band on denaturing polyacrylamide gel electrophoresis, again of apparent MW 40,000 Da, strongly suggesting that the major Coomassie blue-stained band in the most purified preparation is the cholesterol sulfotransferase protein. Among 3beta-hydroxysteroids with a A5 double bond that were tested, each served as a substrate, while androgens, estrogens, corticosteroids, p-nitrophenol and DOPA did not serve as substrates. Apparent Michaelis constants for the 3beta-hydroxysteroid substrates ranged from 0.6 to 8 microM.  相似文献   

8.
The lining of the trachea consists of a pseudostratified, mucociliary epithelium that under a variety of conditions, such as vitamin A deficiency, toxic and mechanical injury, becomes a stratified squamous epithelium. Several in vitro cell culture models have been established to study the process of differentiation of airway epithelium. Such studies have indicated that mucosecretory differentiation of tracheal epithelial cells can be modulated by substratum. This study was undertaken to understand molecular mechanisms of squamous differentiation in tracheal epithelia. Primary cultured tracheal cells grown on uncoated filters were differentiated to single layer of squamous cells, whereas cells were grown as stratified columnar cells on collagen-I coated filters. The responses to secretagogues were altered according to culture conditions. DD-PCR revealed that FAK and a WD protein expression was increased in squamous tracheal epithelia. Expression of a WD protein was changed by the treatment of retinoic acid in various epithelial cells. These results indicated that squamous differentiation of tracheal cells changes the expression of a variety of genes, and that the experimental model for this study can be employed to study molecular mechanisms of squamous differentiation in airway epithelial cells.  相似文献   

9.
Rabbit tracheal epithelial (RbTE) cells in primary culture undergo at confluence a multistep program of squamous differentiation. This study examines the expression of keratins in RbTE cells in relation to this differentiation process. During the exponential growth phase RbTE cells are undifferentiated and express three major keratins, K5, K14, and K19, and two minor keratins, K6 and K16. Squamous differentiation is accompanied by increased expression of keratins K6, K16, and K19, and in particular of keratin K13, which reacts specifically with the monoclonal antibody AE8. These changes in keratin synthesis coincide with the commitment to terminal differentiation. Retinoic acid, an inhibitor of the expression of the squamous differentiated phenotype, inhibits the increase in the expression of K6, K16, and K13 and reduces the expression of K5 and K14; however, retinoic acid treatment results in increased levels of keratin K19 and K18. Retinoic acid inhibits the expression of K16 and K13 at concentrations as low as 10(-9)-10(-10) M. At least some of these changes in keratins appear to be related to alterations in the cellular levels of the respective mRNAs. Our results indicate that specific changes in keratin expression, in particular keratin K13, correlate with the onset of squamous differentiation in RbTE cells. Induction of the expression of keratin K13 may function as a marker of squamous differentiation in tracheobronchial epithelial cells.  相似文献   

10.
Squamous differentiation of rabbit tracheal epithelial cells is accompanied by an approximately 50-fold increase in the activity of type I (epidermal) transglutaminase, while the levels of type II (tissue) transglutaminase remain almost undetectable. To identify a cDNA encoding type I transglutaminase, we screened a library of cDNA clones prepared from poly(A)+ RNA isolated from squamous-differentiated rabbit tracheal epithelial cells. Four overlapping clones (represented by clone pTG-7) which span a range of 2.8 kilobases were identified; partial sequencing of pTG-7 indicated that it encodes a transglutaminaselike protein. pTG-7 hybridized to a 3.6-kilobase mRNA which is distinct from that for type II transglutaminase. pTG-7 mRNA levels were low in proliferative cells, increased dramatically in squamous-differentiated cells, and could be further enhanced by growth of the cells in high concentrations (2 mM) of calcium ions. Retinoic acid, which blocks the expression of the squamous phenotype, prevented this increase in pTG-7 mRNA levels. These changes in levels of pTG-7 mRNA parallel the changes in type I transglutaminase activity observed under similar culture conditions. These data indicate that pTG-7 encodes the mRNA for transglutaminase type I and that expression of this mRNA is negatively regulated by retinoic acid.  相似文献   

11.
12.
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nɛ -(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4–hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   

13.
Summary The differentiation of tracheal epithelial cells in primary culture was investigated according to the nature of the extracellular matrix used. Cultures obtained by the explant technique were realized on a type I collagen substratum either as a thin, dried coating or as a thick, hydrated gel supplemented with culture medium and serum. These two types of substratum induced distinct cell morphology and cytokeratin expression in the explant derived cells. Where cells are less proliferating (from Day 7 to 10 of culture), differentiation was evaluated by morphologic ultrastructural observations, immunocytochemical detection of cytokeratins, and determination of cytokeratin pattern by biochemical analysis. The epithelium obtained on gel was multilayered, with small, round basal cells under large, flattened upper cells. The determination of the keratin pattern expressed by cells grown on gel revealed an expression of keratin 13, already considered as a specific marker of squamous metaplasia, that diminished with retinoic acid treatment. Present results demonstrated by confocal microscopy that K13-positive cells were large upper cells with a dense keratin network, whereas lower cells were positively stained with a specific monoclonal antibody to basal cells (KB37). Moreover, keratin neosynthesis analysis pointed out a higher expression of K6, a marker of hyperproliferation, on gel than on coating. All these data suggest a differentiation of rabbit tracheal epithelial cells grown on gel toward squamous metaplasia. By contrast, the epithelium observed on coating is nearly a monolayer of very large and spread out cells. No K13-positive cells were observed, but an increase in the synthesis of simple epithelium marker (K18) was detected. These two substrata, similar in composition and different in structure, induce separate differentiation and appear as good tools to explore the mechanisms of differentiation of epithelial tracheal cells.  相似文献   

14.
Summary A simple, disposable, biphasic cultivation chamber has been developed for respiratory tract epithelial cells. This chamber, the Whicutt chamber, contains a movable, transparent, permeable gelatin membrane that can be employed either submerged in the culture medium, thereby feeding the cells by the traditional immersion method, or raised to the surface of the culture medium, to bring the apical surfaces of the cells into contact with air and provide nutrients only from below (basal feeding). The effects of biphasic cultivation on the growth and differentiation of respiratory tract epithelial cells from different sources have been studied in Whitcutt chambers. Primary hamster tracheal epithelial (HTE) cells grown to confluence with basal feeding developed a ciliated columnar morphology, with differentiated features (cilia and mucous granules) located in the apical region of the epithelial layer. These cells secreted mucinlike molecules from the apical surface (i.e. the surface in contact with air). Although the apical localization of differentiation features was greater, mucous cell differentiation achieved by basal feeding was quantitatively not greater than that achieved by continuous immersion feeding. Similarly, basal feeding did not alter the degree of epithelial cell differentiation in cultures derived from rat, rabbit, and monkey tracheas or from human bronchial and nasal tissues. In contrast, the differentiation of guinea pig tracheal epithelial cells in culture was significantly influenced by the feeding method employed. When fed basally, guinea pig tracheal epithelial cell cultures expressed various mucociliary functions with resemblance to mucociliary layers in vivo, whereas constantly immersed cultures seemed stratified and squamous. These results suggest that, at least for guinea pigs, the combination of feeding methods provided by the Whitcutt chamber can be used to achieve differentiated cultures of tracheal epithelial cells with a polarity of differentiation that is similar to that observed in intact airways in vivo. Editor's statement Supported in part by grants from NCI (CA42097) and American Cancer Society (BC-465) to R. W., and grants from The Council for Tobacco Research-USA, and Cystic Fibrosis Foundation to K.B.A.  相似文献   

15.
Expression patterns of loricrin in various species and tissues   总被引:3,自引:0,他引:3  
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nε-(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   

16.
Summary The differentiation status in cultures of primary rat liver parenchymal cells was determined by measuring the activities of various xenobiotic metabolizing enzymes. Most enzyme activities dropped rather rapidly in monocultures of parenchymal cells. The protein content and the activities of cytosolic epoxide hydrolase, glutathione S-transferase, andα-naphthol UDP-glucuronosyl transferase were, however, well stabilized in 7-day-old co-cultures of parenchymal cells with two different lines of rat liver nonparenchymal epithelial cells (NEC1 and NEC2). Phenol sulfotransferase and microsomal epoxide hydrolase activity were reduced in this coculture system after 7 days to about 30 and 20% of the initial activity. Generally, higher enzyme activities were measured in co-cultures with one specific epithelial cell line (NEC2) as compared to those with the other line (NEC1). C3H 10T1/2 mouse embryo fibroblasts supported the parenchymal cells even better than the two epithelial lines, because the activity of microsomal epoxide hydrolase was also stabilized. Glutathione transferase activity was increased over time in this co-culture system. Our results show that the differentiation status of liver parenchymal cells was much better stabilized in co-cultures than in monocultures but that, depending on the type of cells used for co-culture, great quantitative differences existed. The entire pattern of xenobiotic metabolizing enzyme activities could not be stabilized at the kind of levels found in freshly isolated parenchymal cells.  相似文献   

17.
Using immunogold-silver techniques, we have demonstrated that, in rats, type-I (keratinocyte) transglutaminase is expressed primarily in stratified squamous epithelia of the integument, the upper digestive tract, and the lower female genital tract. In these epithelia, the enzyme was found to be present predominantly in the granular layer, but was evident at low levels even in the basal layer, especially in the genital tract. No immunoreactivity was detected in glandular, columnar, or transitional epithelia or in soft tissues. However, considerable enzyme antigenicity was observed in the endometrium and in major ducts of the pancreas and mammary glands of near-term pregnant and early postpartum females. In cultures, substantial immunoreactivity was readily identifiable not only in epidermal, vaginal, and esophageal epithelial cells (immunopositive in vivo), but also in urinary bladder, seminal vesicle, and tracheal epithelial cells (immunonegative in vivo). Primary epithelial outgrowths from bladder and seminal vesicle tissue explants were immunopositive, demonstrating rapid adaptation to the culture environment. These results reveal three distinct levels of regulation of transglutaminase expression in various cell types: during the differentiation of keratinocytes, during pregnancy, being evident principally in the endometrium but detectable elsewhere as well, and during the cultivation of certain epithelia which do not normally express the enzyme in vivo. We conclude that type-I transglutaminase may be a valuable marker for elucidating the regulation of normal epithelial differentiation and squamous metaplasia.  相似文献   

18.
Two murine monoclonal antibodies, 3BG8 and 9BG8, which were raised against a rat tracheal squamous-cell-carcinoma cell line, recognize cell-surface antigens on normal rat squamous epithelium (skin, esophagus, vagina, and cornea) as well as on carcinogen-exposed, immortalized, rat tracheal epithelial cells. Monoclonal antibody 3BG8 binds to a 115-kilodalton cell-surface protein on undifferentiated basal cells of the epithelium, while the binding of the other antibody, 9BG8, occurs in both differentiated and undifferentiated populations of normal squamous epithelium and squamous cell carcinomas. Undifferentiated tracheal carcinomas bound only the 3BG8 antibody. No binding of either antibody was detected on normal tracheal mucociliary epithelium. Only under conditions that induce squamous differentiation of rat tracheal epithelium was binding of 3BG8 and 9BG8 detected. For reasons which are not clear at present, 9BG8 dramatically inhibits the growth of normal tracheal and esophageal cells in primary culture, whereas only 3BG8 affects the growth of carcinogen-altered tracheal cell lines. Based on antigen characterization and distribution, it is concluded that the 3BG8 and 9BG8 epitopes are localized on differentiation antigens which differ from others that have been previously described.  相似文献   

19.
Abstract. Using immunogold-silver techniques, we have demonstrated that, in rats, type-I (keratinocyte) transglutaminase is expressed primarily in stratified squamous epithelia of the integument, the upper digestive tract, and the lower female genital tract. In these epithelia, the enzyme was found to be present predominantly in the granular layer, but was evident at low levels even in the basal layer, especially in the genital tract. No immunoreactivity was detected in glandular, columnar, or transitional epithelia or in soft tissues. However, considerable enzyme antigenicity was observed in the endometrium and in major ducts of the pancreas and mammary glands of near-term pregnant and early postpartum females. In cultures, substantial immunoreactivity was readily identifiable not only in epidermal, vaginal, and esophageal epithelial cells (immunopositive in vivo), but also in urinary bladder, seminal vesicle, and tracheal epithelial cells (immunonegative in vivo). Primary epithelial outgrowths from bladder and seminal vesicle tissue explants were immunopositive, demonstrating rapid adaptation to the culture environment. These results reveal three distinct levels of regulation of transglutaminase expression in various cell types: (1) during the differentiation of keratinocytes, (2) during pregnancy. being evident principally in the endometrium but detectable elsewhere as well, and (3) during the cultivation of certain epithelia which do not normally express the enzyme in vivo. We conclude that type-I transglutaminase may be a valuable marker for elucidating the regulation of normal epithelial differentiation and squamous metaplasia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号