首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aceria guerreronis Keifer is a major coconut pest in the Americas, Africa and some Asian countries, and occurs in high population levels in northeastern Brazil. The determination of the climatic conditions that favorably affect its population growth and the prevalence and abundance of predatory mites can promote more efficient control practices. Our objective was to evaluate the pattern of occurrence and population dynamics of A. guerreronis, their associated predators and other mites during a 2?year period in a hybrid coconut plantation in the municipality of Una, state of Bahia, northeastern Brazil. Monthly samples of fruits were taken from June 2008 to May 2010 for qualitative and quantitative evaluation of mites. Aceria guerreronis represented 99.9?% of the mites. An average density of 1,117 mites per fruit and a maximum of 23,596 mites per fruit indicated that the level of infestation can be high in Bahia. Bdella ueckermanni Hernandes, Daud and Feres was the most abundant and frequent predator. Population increase of A. guerreronis was directly related to the temperature rise and inversely related to both the increase of air relative humidity and rainfall. The highest population densities occurred from November to March. The largest A. guerreronis populations occurred in fruits with 32 and 48?% of damaged surface. The relationship between prevailing wind direction and incidence of A. guerreronis could not be corroborated or refuted.  相似文献   

2.
Coconut is an important crop in tropical and subtropical regions. Among the mites that infest coconut palms, Aceria guerreronis Keifer is economically the most important. We conducted surveys throughout the coconut growing areas of Brazil. Samples were taken from attached coconuts, leaflets, fallen coconuts and inflorescences of coconut palms in 112 localities aiming to determine the occurrence and the distribution of phytophagous mites, particularly A. guerreronis, and associated natural enemies. Aceria guerreronis was the most abundant phytophagous mite followed by Steneotarsonemus concavuscutum Lofego & Gondim Jr. and Steneotarsonemus furcatus De Leon (Tarsonemidae). Infestation by A. guerreronis was recorded in 87% of the visited localities. About 81% of all predatory mites belonged to the family Phytoseiidae, mainly represented by Neoseiulus paspalivorus De Leon, Neoseiulus baraki Athias-Henriot and Amblyseius largoensis Muma; 12% were Ascidae, mainly Proctolaelaps bickleyi Bram, Proctolaelaps sp nov and Lasioseius subterraneus Chant. Neoseiulus paspalivorus and N. baraki were the most abundant predators on attached coconuts. Ascidae were predominant on fallen coconuts, while A. largoensis was predominant on leaflets; no mites were found on branches of inflorescences. Leaflets harboured higher mite diversity than the attached coconuts. Mite diversity was the highest in the state Pará and on palms surrounded by seasonal forests and Amazonian rain-forests. Neoseiulus paspalivorus, N. baraki and P. bickleyi were identified as the most promising predators of A. guerreronis. Analyses of the influence of climatic factors revealed that dry ambient conditions favour the establishment of A. guerreronis. Neoseiulus paspalivorus and N. baraki have differing climatic requirements; the former being more abundant in warm and dry areas, the latter prevailing in moderately tempered and humid areas. We discuss the significance of our findings for natural and biological control of A. guerreronis.  相似文献   

3.
Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of the coconut (Cocos nucifera L.), and the use of pesticides is the current method to control it. However, no standard toxicological tests exist to select and assess the efficiency of molecules against the coconut mite. The aim of this study was to develop a methodology that allows for the evaluation of the relative toxicity of acaricides to A. guerreronis through rapid laboratory procedures. We confined A. guerreronis on arenas made out of coconut leaflets and tested two application methods: immersing the leaf fragments in acaricides and spraying acaricides on the leaf fragments under a Potter spray tower. In the latter application method, we sprayed leaf fragments both populated with and devoid of mites. We evaluated the comparative toxicity of two populations (Itamaracá and Petrolina, Pernambuco, Brazil) by spraying on leaflets without mites and submitted the mortality data to probit analysis after 24 h of exposure. No difference was observed in the LC50, regardless of whether the leaflets were immersed or sprayed with acaricide (abamectin, chlorfenapyr or fenpyroximate). The toxicity of chlorfenapyr and fenpyroximate did not differ, irrespective of whether it was applied directly to the leaflet or to the mite; however, the toxicity of abamectin was higher when applied directly to the mite. Chlorpyrifos and abamectin toxicities were lower for the Petrolina population than for the Itamaracá population. Immersing and spraying coconut leaflets can be used to assess the mortality of A. guerreronis under laboratory conditions.  相似文献   

4.
The red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), was recently introduced in the Americas. It spread quickly throughout coconut palm growing areas, expanding considerably its host range. The invasion of this species has caused high economic impact in several countries. In Brazil, extensive areas are expected to be affected. For logistical reasons and other concerns, chemical control does not seem desirable for the control of this pest in most Latin American countries. Biological control of R. indica by introducing exotic natural enemies seems to be an important control measure to be considered. Surveys in many countries have shown that Amblyseius largoensis (Muma) (Acari: Phytoseiidae) is a very common predator on coconut palms. This study compared the biology of a population of A. largoensis found for a long time in association with R. indica in La Reunion Island (Indian Ocean) with a population from Roraima State (northern Brazil), where R. indica was first found about two and a half years ago. No significant differences were observed between populations in relation to the duration of different immature stages or total survivorship. However, the oviposition period, prey consumption and net reproductive rate were significantly higher for the La Reunion population, warranting further investigation to determine whether that population should be released in Roraima to control the pest.  相似文献   

5.
Predatory mites identified as Neoseiulus paspalivorus DeLeon (Phytoseiidae) have been considered as agents for classical biological control of the coconut mite, Aceria guerreronis Keifer (Eriophyidae), in Africa and elsewhere. Preliminary identification of geographically distinct populations as belonging to the same species (N. paspalivorus) was based on their morphological similarity. However, laboratory studies recently conducted have shown large differences in feeding behaviors and biological characteristics among individuals collected from three geographic origins: Brazil (South America), Benin and Ghana (West Africa). As morphologically similar specimens do not necessarily belong to the same species, we evaluated under laboratory conditions, reproductive compatibility between the specimens from three geographic locations to ascertain their conspecificity. Morphological measurements were also made to determine whether there is a means of discriminating between them. Inter-population crosses showed complete reproductive isolation between the three geographic populations, but interpopulation discontinuities in morphometric characters were absent. These results indicate that the tested specimens are distinct biological entities despite morphological similarity. Further molecular genetic studies are therefore proposed, including screening for endosymbionts and assessment of genetic differentiation, to determine the cause of reproductive incompatibility and to clarify the taxonomic relationship between those populations.  相似文献   

6.
The phytophagous mite Aceria guerreronis Keifer is an important pest of coconut worldwide. A promising method of control for this pest is the use of predatory mites. Neoseiulus baraki (Athias-Henriot) and Proctolaelaps bickleyi Bram are predatory mites found in association with A. guerreronis in the field. To understand how these predators respond to olfactory cues from A. guerreronis and its host plant, the foraging behavior of the predatory mites was investigated in a Y-tube olfactometer and on T-shaped arenas. The predators were subjected to choose in an olfactometer: (1) isolated parts (leaflet, spikelet or fruit) of infested coconut plant or clean air stream; (2) isolated parts of non-infested or infested coconut plant; and (3) two different plant parts previously shown to be attractive. Using T-shaped arenas the predators were offered all possible binary combinations of discs of coconut fruit epidermis infested with A. guerreronis, non-infested discs or coconut pollen. The results showed that both predators were preferred (the volatile cues from) the infested plant parts over clean air. When subjected to odours from different infested or non-infested plant parts, predators preferred the infested parts. Among the infested plant parts, the spikelets induced the greatest attraction to predators. On the arenas, both predators preferred discs of coconut fruits infested with A. guerreronis over every other alternative. The results show that both predators are able to locate A. guerreronis by olfactory stimuli. Foraging strategies and implications for biological control are discussed.  相似文献   

7.
Major infestations of the flat mite species Raoiella indica Hirst affecting bananas, palms and other ornamental plants have been reported from the Caribbean islands, Mexico, FL (USA), Venezuela, Colombia and Brazil. Specimens from these localities were examined using traditional light microscopy and low-temperature scanning electron microscopy techniques. While little is known about the biology of this mite, its recent appearance in the Americas in both commercial coconut and banana plantations has raised concerns about its economic impact as an invasive pest.  相似文献   

8.
The coconut mite (CM), Aceria guerreronis Keifer, has spread to most coconut production areas worldwide and it has been considered one of the most notorious and important pests of coconut fruits in many countries. Although CM has been reported to damage coconuts for over 40 years in the Americas and Africa it continues to cause considerable losses in countries of these continents, and in the last 15 years it has also reached countries from southeast Asia—India and Sri Lanka. Several other countries of southeast Asia are also major coconut producers and the impact by the mite in currently affected areas suggests that the dispersion of CM to these major producers could lead to very heavy losses. Great advances about our knowledge on CM and its control have been achieved, especially in the last decade, after its introduction into Asia. However, much remains to be known to allow the design of efficient strategies to it. This paper brings together information on CM invasive history, distribution, hosts, morphology, biology, dispersal, colonization process, population dynamics, symptoms and injury, estimated losses, sampling techniques, control strategies and new perspectives for its control.  相似文献   

9.
The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.  相似文献   

10.
Aceria guerreronis Keifer can cause severe damage to coconuts in several countries around the world. Rare studies have been conducted to determine the predatory mites associated with A. guerreronis in Brazil. The study evaluated the prevalence of A. guerreronis and associated predators on the bracts and on the surface of the fruits underneath the bracts, for 12 months, on coconut palms grown along the coast of the States of Alagoas, Paraíba and Pernambuco, Northeastern Brazil. Mites of 10 families were found, but by far the most abundant species was A. guerreronis, corresponding to 99.5% of the mites collected. The prevailing species amongst the predators were the Phytoseiidae mites Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon). These are flat mites that have short limbs, characteristics that allow them to invade the main habitat occupied by A. guerreronis. Other predators were found, but in low numbers, due mainly to their difficulty in reaching the fruit areas most inhabited by A. guerreronis. However, these mites could prey on that pest when it leaves its preferred habitat to disperse. No significant correlations were observed between the levels of abiotic factors and the population levels of A. guerreronis or of the phytoseiids associated with it. This probably occurred due to the simultaneous and conflicting effects of those factors on the mites in the field, or to significant differences between the climatic factors measured in the environment and those prevailing in the habitat occupied by A. guerreronis.  相似文献   

11.
Raoiella indica Hirst (Acari: Tenuipalpidae) is considered a pest of coconut palm in Asia and the Middle East. This mite was recently introduced in the Americas, where it spread to several countries and expanded its range of hosts, causing heavy losses to coconut and banana production. The phytoseiid mite Amblyseius largoensis (Muma) is one of the predators most often encountered in coconut palms. Because the current prospects for the control of R. indica in the New World indicate the use of acaricides and the management of their natural enemies, the objective of this study was to evaluate the toxicity of selected acaricides to R. indica and the selectivity (i.e., toxicity to the predator relative to toxicity to the prey) for A. largoensis. Assays were performed by the immersion of banana leaf discs in acaricide solutions, followed by the placing of adult females of the pest or predator on the discs. Mortality of the mites was evaluated after 24 h, and the data obtained were subjected to probit analysis. Abamectin, fenpyroximate, milbemectin and spirodiclofen were the products most toxic to R. indica adults, whereas fenpyroximate and spirodiclofen were the most selective for A. largoensis.  相似文献   

12.
The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive phytophagous mite that was recently introduced into The Americas. The predatory mite Amblyseius largoensis Muma (Acari: Phytoseiidae) has been the only natural enemy consistently found in association with RPM. This study aimed to determine if A. largoensis populations from the Indian Ocean Islands (La Réunion and Mauritius) and the Americas (Brazil, Trinidad and Tobago and the USA) consist a taxonomic unit or a group of cryptic species. First, the morphological variability among the A. largoensis populations from these areas was evaluated through morphometric analyses of 36 morphological traits. Then, their genetic variability and phylogenetic relationships were assessed based on two target DNA fragments: the nuclear Internal Transcribed Spacer and the mithochondrial 12S rRNA. Finally, reproductive compatibility of the populations from La Réunion and Roraima, Brazil was evaluated. Morphometric differences between the A. largoensis specimens from La Réunion Island and the Americas were observed, most of them on the length of the setae. Molecular analysis indicated that the A. largoensis populations from the Indian Ocean Islands and the Americas belong to the same taxonomic entity, although to two well defined genetic groups. Crossings involving the A. largoensis populations from La Réunion Island and Roraima, Brazil revealed complete reproductive compatibility between these populations. Information on the morphometric and genetic variability among studied A. largoensis populations can be further exploited in future studies to follow colonization of Indian Ocean Islands populations in the Americas, in the case of field releases.  相似文献   

13.
The accurate characterization of biological control agents is a key step in control programs. Recently, Amblyseius largoensis from Thailand were introduced in Brazil to evaluate their efficiency for the control of the red palm mite, Raoiella indica. The aim of this study was to confirm their identification and to characterize the population from Thailand, comparing it to populations of the Americas and Indian Ocean islands. In addition, a population of A. largoensis from New Caledonia, Oceania, of which DNA sequences were available, was included in phylogenetic analyses. Morphometric data obtained for the population of A. largoensis from Thailand were compared to those of populations from Reunion Island and the Americas through univariate and multivariate analyses. Two DNA fragments were amplified and sequenced: the nuclear ribosomal region ITSS and the mitochondrial 12S rRNA. Haplotypes (12S rRNA) and genotypes (ITSS) were identified and phylogenetic analyses using both fragments were conducted separately and combined using maximum likelihood and the Bayesian information criterion. The integrative approach reveals morphometric and molecular variabilities among populations of A. largoensis and shows that the population identified as A. largoensis collected in Thailand, as well as that from New Caledonia, are conspecific to the populations of the Americas and Indian Ocean islands. Populations from the Americas and Asia are more related to each other than with that from the Indian Ocean islands. Hypotheses to explain this clustering are proposed. Data on the molecular intraspecific variability of this predatory mite from remote areas will be helpful for the development of molecular diagnosis.  相似文献   

14.
Coconut mite (Aceria guerreronis 'Keifer') has become a major threat to Indian coconut (Co?cos nucifera L.) cultivators and the processing industry. Chemical and biological control measures have proved to be costly, ineffective, and ecologically undesirable. Planting mite-resistant coconut cultivars is the most effective method of preventing yield loss and should form a major component of any integrated pest management stratagem. Coconut genotypes, and mite-resistant and -susceptible accessions were collected from different parts of South India. Thirty-two simple sequence repeat (SSR) and 7 RAPD primers were used for molecular analyses. In single-marker analysis, 9 SSR and 4 RAPD markers associated with mite resistance were identified. In stepwise multiple regression analysis of SSRs, a combination of 6 markers showed 100% association with mite infestation. Stepwise multiple regression analysis for RAPD data revealed that a combination of 3 markers accounted for 83.86% of mite resistance in the selected materials. Combined stepwise multiple regression analysis of RAPD and SSR data showed that a combination of 5 markers explained 100% of the association with mite resistance in coconut. Markers associated with mite resistance are important in coconut breeding programs and will facilitate the selection of mite-resistant plants at an early stage as well as mother plants for breeding programs.  相似文献   

15.
The red palm mite (Raoiella indica), an invasive pest of coconut, entered the Western hemisphere in 2004, then rapidly spread through the Caribbean and into Florida, USA. Developing effective sampling methods may aid in the timely detection of the pest in a new area. Studies were conducted to provide and compare intra tree spatial distribution of red palm mite populations on coconut in two different geographical areas, Trinidad and Puerto Rico, recently invaded by the mite. The middle stratum of a palm hosted significantly more mites than fronds from the upper or lower canopy and fronds from the lower stratum, on average, had significantly fewer mites than the two other strata. The mite populations did not vary within a frond. Mite densities on the top section of the pinna had significantly lower mite densities than the two other sections, which were not significantly different from each other. In order to improve future sampling plans for the red palm mite, the data was used to estimate the variance components associated with the various levels of the hierarchical sampling design. Additionally, presence-absence data were used to investigate the probability of no mites being present in a pinna section randomly chosen from a frond inhabited by mites at a certain density. Our results show that the most precise density estimate at the plantation level is to sample one pinna section per tree from as many trees as possible.  相似文献   

16.
Arabis alpina is a characteristic plant in arctic-alpine habitats and serves as a classical example to demonstrate biology, ecology and biogeography of arctic-alpine disjuncts. It has a wider distribution than most other arctic-alpine plants, covering all European mountain systems, the Canary Islands, North Africa, the high mountains of East Africa and Ethiopia, the Arabian Peninsula and mountain ranges of Central Asia in Iran and Iraq. Additionally it is found in the northern amphi-Atlantic area including northeastern North America, Greenland, Iceland, Svalbard and northwestern Europe. We used markers from the nuclear (internal transcribed spacer of ribosomal DNA) and chloroplast genome (trnL-F region) to reconstruct its phylogeographic history. Both markers revealed clear phylogeographic structure. We suggest that A. alpina originated in Asia Minor less than 2 million years ago based on synonymous mutation rates of different genes (plastidic matK, nuclear adh and chs). From the Asian ancestral stock one group migrated via the Arabian Peninsula to the East African high mountains. A second group gave rise to all European and northern populations, and also served as source for the northwest African populations. A third group, which is still centred in Asia, migrated independently southwards and came into secondary contact with the East African lineage in Ethiopia, resulting in high genetic diversity in this area. In the Mediterranean regions, the genetic diversity was relatively high with numerous unique haplotypes, but almost without geographic structure. In contrast, the populations in the northern amphi-Atlantic area were extremely depauperate, suggesting very recent (postglacial) expansion into this vast area from the south.  相似文献   

17.
Neozygites tanajoae is an entomopathogenic fungus which has been used for biocontrol of the cassava green mite (Mononychellus tanajoa, CGM) in Africa. Establishment and dispersal of Brazilian isolates which have been introduced into some African countries in recent years to improve CGM control was followed with specific PCR assays. Two primer pairs, NEOSSU_F/NEOSSU_R and 8DDC_F/8DDC_R, were used to differentiate isolates collected from several locations in Brazil and from three countries in Africa, Benin, Ghana and Tanzania. The first primer pair enabled the species-specific detection of Neozygites tanajoae, while the second differentiated the Brazilian isolates from those of other geographical origin. PCR assays were designed for detection of fungal DNA in the matrix of dead infested mites since N. tanajoae is difficult to isolate and culture on selective artificial media. Our results show that all isolates (Brazilian and African) that sporulated on mummified mites were amplified with the first primer pair confirming their Neozygites tanajoae identity. The second pair amplified DNA from all the Brazilian isolates, but did not amplify any DNA samples from the African isolates. None of the two primers showed amplification neither from any of the non-sporulating mite extracts nor from the dead uninfected mites used as negative controls. We confirmed that the two primer pairs tested are suitable for the detection and differential identification of N. tanajoae isolates from Brazil and Africa and that they are useful to monitor the establishment and spread of the Brazilian isolates of N. tanajoae introduced into Benin or into other African countries for improvement of CGM biocontrol.  相似文献   

18.
Compared with Europe and the Americas, the ectoparasites of African birds are poorly understood, despite the avian fauna being relatively well known. Notably, previous studies documenting the host associations and genetic diversity of parasitic chewing lice of southern African birds have been limited in geographic and taxonomic scope. Recent field expeditions exploring the avian diversity in South Africa facilitated an opportunity to obtain louse specimens from a taxonomically diverse host assemblage. This study is the first to investigate avian louse host associations and diversity across a large portion of South Africa encompassing several distinct habitat types, while incorporating molecular genetic data (from portions of the mitochondrial COI and nuclear EF‐1α genes) for ectoparasite phylogenetic analyses. From 1105 South African bird individuals and 170 species examined for lice, a total of 105 new louse–host associations were observed. Morphological and genetic examination of lice with these new host associations reveals a maximum of 66 louse species new to science. Results of this study support the observation that examining museum specimens is a useful way to investigate louse diversity and host associations.  相似文献   

19.
Distribution patterns and numerical variability of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and its predator Neoseiulus aff. paspalivorus DeLeon (Phytoseiidae) on the nuts of 3- to 7-month-old bunches of coconut palms were studied at two sites in Sri Lanka. At the two sites, coconut mites were present on 88 and 75% of the nuts but no more than three-quarters of those nuts showed damage symptoms. N. aff. paspalivorus was found more on mature nuts than on immature nuts. Spatial and temporal distribution of coconut mites and predatory mites differed significantly. The mean number of coconut mites per nut increased until 5-month-old bunches and declined thereafter. The densities of predatory mites followed a similar trend but peaked 1 month later. Variability in the numbers of mites among palms and bunches of the same age was great, but was relatively low on 6-month-old bunches. The results indicate that assessment of infestation levels by damage symptoms alone is not reliable. Sampling of coconut and/or predatory mite numbers could be improved by using several nuts of 6-month-old bunches. The effect of predatory mites on coconut mites over time suggests that N. aff. paspalivorus could be a prospective biological control agent of A. guerreronis.  相似文献   

20.
The presence of the red palm mite, Raoiella indica Hirst, is reported for the first time in Brazil. This invasive mite was found in July 2009 infesting coconut palms and bananas in urban areas of Boa Vista, State of Roraima, in northern Brazil. Comments on the possible pathways of R. indica into the country, present and potential impact of its introduction and mitigating measures to prevent or to delay the mite spread in Brazil are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号