首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human α-synuclein is a presynaptic terminal protein and can form insoluble fibrils that are believed to play an important role in the pathogenesis of several neurodegenerative diseases such as Parkinson‘s disease, dementia with Lewy bodies and Lewy body variant of Alzheimer‘s disease. In this paper, in situ atomic force microscopy has been used to study the structural properties of α-synuclein fibrils in solution using two different atomic force microscopy imaging modes: tapping mode and contact mode. In the in situ contact mode atomic force microscopy experiments α-synuclein fibrils quickly broke into fragments, and a similar phenomenon was found using tapping mode atomic force microscopy in which α-synuclein fibrils were incubated with guanidine hydrochloride (0.6 M). The α-synuclein fibrils kept their original filamentous topography for over 1h in the in situ tapping mode atomic force microscopy experiments. The present results provide indirect evidence on how 13-sheets assemble into α-synuclein fibrils on a nanometer scale.  相似文献   

2.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

3.
The ultramicroscopic composition and supramolecular structure of wood matrix were investigated by methods of electron and atomic force microscopy (AFM). New data on specific features of the composition and cell wall structure of Juniper wood (Juniperus communis L.) were obtained. Native lignin was found to be water soluble. It was also shown that lignin does not constitute a continuous matrix between cellulose fibrils, but is deposited as spherical particles.  相似文献   

4.
In this paper we demonstrate that the sequence encoded by exon 28 (EX28) of human tropoelastin gene is able to give amyloid-like fibrils. CD (circular dichroism) in solution and solid-state FTIR (Fourier transform infrared spectroscopy) spectroscopies have shown the presence of beta-sheet conformation. At the supramolecular level the fibers formed by EX28 peptide were investigated by AFM (atomic force microscopy) and ESEM (environmental scanning electron microscopy). A very big left-handed helix, 100 mum long, is visible together with aggregates of different sizes, some of them being constituted by helically interwoven fibers. Furthermore, an additional AFM image of EX28 is shown where the ultrastructure found is somewhat reminiscent of a more or less retiform film. These findings should be useful for designing proper elastin-inspired biomaterials.  相似文献   

5.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

6.
A series of recent nanoindentation experiments on the protein shells (capsids) of viruses has established atomic force microscopy (AFM) as a useful framework for probing the mechanics of large protein assemblies. Specifically these experiments provide an opportunity to study the coupling of the global assembly response to local conformational changes. AFM experiments on cowpea chlorotic mottle virus, known to undergo a pH-controlled swelling conformational change, have revealed a pH-dependent mechanical response. Previous theoretical studies have shown that homogeneous changes in shell geometry can play a significant role in the mechanical response. This article develops a method for accurately capturing the heterogeneous geometry of a viral capsid and explores its effect on mechanical response with a nonlinear continuum elasticity model. Models of both native and swollen cowpea chlorotic mottle virus capsids are generated from x-ray crystal structures, and are used in finite element simulations of AFM indentation along two-, three-, and fivefold icosahedral symmetry orientations. The force response of the swollen capsid model is observed to be softer by roughly a factor of two, significantly more nonlinear, and more orientation-dependent than that of a native capsid with equivalent elastic moduli, demonstrating that capsid geometric heterogeneity can have significant effects on the global structural response.  相似文献   

7.
The preponderance of structural data of the purple membrane from X-ray diffraction (XRD), electron crystallography (EC), and atomic force microscopy (AFM) allows us to ask questions about the structure of bacteriorhodopsin itself, as well as about the information derived from the different techniques. The transmembrane helices of bacteriorhodopsin are quite similar in both EC and XRD models. In contrast, the loops at the surfaces of the purple membrane show the highest variability between the atomic models, comparable to the height variance measured by AFM. The excellent agreement of the AFM topographs with the atomic models from XRD builds confidence in the results. Small technical difficulties in EC lead to poorer resolution of the loop structures, although the combination of atomic models with AFM surfaces allows clear interpretation of the extent and flexibility of the loop structures. While XRD remains the premier technique to determine very-high-resolution structures, EC offers a method to determine loop structures unhindered by three-dimensional crystal contacts, and AFM provides information about surface structures and their flexibility under physiological conditions.  相似文献   

8.
奥沙利铂被称为第三代铂类药物,特别对胃肠道肿瘤具有较好的疗效.目前大多数的研究表明奥沙利铂的主要作用靶点是DNA分子,但它与DNA分子形成的关键结构和作用机制仍处在探索阶段.本研究运用紫外可见吸收光谱和原子力显微镜观察探索奥沙利铂与DNA在活体外的相互作用过程,从而揭示奥沙利铂产生抗癌作用的主要分子结构基础.首先使用紫外光谱研究了较高浓度奥沙利铂与DNA的作用过程.在此基础上,进一步采用原子力显微镜在高定向热解石墨表面观察了不同浓度奥沙利铂与质粒DNA在37℃条件下作用不同时间后的结构形貌变化,分析了奥沙利铂与DNA相互作用的过程.高分辨原子力显微观察结果表明奥沙利铂与DNA作用后可导致质粒DNA的结构发生显著的变化.随着作用时间的增加,DNA分子逐渐由伸展的链状变化为相互缠绕并带有许多结点的紧密结构,最终变化为更紧密的球状结构.本研究结果表明奥沙利铂可通过化学键合作用和静电作用使质粒DNA逐渐凝集为紧密的球状结构,这种结构可能对奥沙利铂的抗癌活性和毒性产生重要影响.  相似文献   

9.
Atomic force microscopy and chemical force microscopy of microbial cells   总被引:1,自引:0,他引:1  
Dufrêne YF 《Nature protocols》2008,3(7):1132-1138
Over the past years, atomic force microscopy (AFM) has emerged as a powerful tool for imaging the surface of microbial cells with nanometer resolution, and under physiological conditions. Moreover, chemical force microscopy (CFM) and single-molecule force spectroscopy have enabled researchers to map chemical groups and receptors on cell surfaces, providing valuable insight into their structure-function relationships. Here, we present protocols for analyzing spores of the pathogen Aspergillus fumigatus using real-time AFM imaging and CFM. We emphasize the use of porous polymer membranes for immobilizing single live cells, and the modification of gold-coated tips with alkanethiols for CFM measurements. We also discuss recording conditions and data interpretation, and provide recommendations for reliable experiments. For well-trained AFM users, the entire protocol can be completed in 2-3 d.  相似文献   

10.
Magnetic force microscopy has the capability to detect magnetic domains from a close distance, which can provide the magnetic force gradient image of the scanned samples and also simultaneously obtain atomic force microscope (AFM) topography image as well as AFM phase image. In this work, we demonstrate the use of magnetic force microscopy together with AFM topography and phase imaging for the characterization of magnetic iron oxide nanoparticles and their cellular uptake behavior with the MCF7 carcinoma breast epithelial cells. This method can provide useful information such as the magnetic responses of nanoparticles, nanoparticle spatial localization, cell morphology, and cell surface domains at the same time for better understanding magnetic nanoparticle‐cell interaction. It would help to design magnetic‐related new imaging, diagnostic and therapeutic methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
We have performed a very extensive investigation of chromatin folding in different buffers over a wide range of ionic conditions similar to those found in eukaryotic cells. Our results show that in the presence of physiological concentrations of monovalent cations and/or low concentrations of divalent cations, small chicken erythrocyte chromatin fragments and chromatin from HeLa cells observed by transmission electron microscopy (TEM) show a compact folding, forming circular bodies of approximately 35 nm in diameter that were found previously in our laboratory in studies performed under very limited conditions. Since TEM images are obtained with dehydrated samples, we have performed atomic force microscopy (AFM) experiments to analyze chromatin structure in the presence of solutions containing different cation concentrations. The highly compact circular structures (in which individual nucleosomes are not visible as separated units) produced by small chromatin fragments in interphase ionic conditions observed by AFM are equivalent to the structures observed by TEM with chromatin samples prepared under the same ionic conditions. We have also carried out experiments of sedimentation and trypsin digestion of chromatin fragments; the results obtained confirm our AFM observations. Our results suggest that the compaction of bulk interphase chromatin in solution at room temperature is considerably higher than that generally considered in current literature. The dense chromatin folding observed in this study is consistent with the requirement of compact chromatin structures as starting elements for the building of metaphase chromosomes, but poses a difficult physical problem for gene expression during interphase.  相似文献   

12.
Recent advances in atomic force microscopy (AFM) imaging of nucleic acids include the visualization of DNA and RNA incorporated into devices and patterns, and into structures based on their sequences or sequence recognition. AFM imaging of nuclear structures has contributed to advances in telomere research and to our understanding of nucleosome formation. Highlights of force spectroscopy or pulling of nucleic acids include the use of DNA as a programmable force sensor, and the analysis of RNA flexibility and drug binding to DNA.  相似文献   

13.
There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidal force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.  相似文献   

14.
Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.  相似文献   

15.
Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives.  相似文献   

16.
Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives.  相似文献   

17.
Mandrioli M  Manicardi GC 《Hereditas》2003,138(2):129-132
In order to go in depth into the analysis of holocentric chromosome structure, atomic force microscopy (AFM) was applied to metaphase plates of the aphid Megoura viciae. AFM showed that aphid chromatids adhere to one another without any prominent structure detectable between them and without any evidence of chromosomal constrictions. AFM thus provided new and reliable evidences at a nanomolecular level concerning the holocentric structure of aphid chromosomes, without any of the artefacts due to sample staining or coating that are usually associated with electron microscopy.  相似文献   

18.
The relations between neurite development and the subcellular structures of the hippocampal neuron somata have been studied with atomic force microscopy (AFM). The conformation of the neuron was achieved by the synapse-like structures found by AFM scanning along a neurite of the cell. Hippocampal neuron somata were divided into two or three subcellular parts by one or two horizontal grooves. The upper parts increased while the middle and the lower parts decreased with the number and the length of the neurites and the formation of the neurosynapse-like structures. When neurites sufficiently developed, the middle parts were lost and the lower parts became very small. Mitosis inhibitors could prevent the formation of such subcellular structures of hippocampal neuron somata, which was accompanied by the loss of ability to form synapse-like structures. These results suggest that the upper parts are responsible for neuritogenesis while the middle and the lower parts only have indirect effect on it.  相似文献   

19.
The supramolecular organization of particles composed of heteroxylans (HX) and synthetic lignin (dehydrogenation polymer, DHPs) was studied by light scattering (LS), atomic force microscopy (AFM), and fluorescent probes. Results from static and quasi-elastic light scattering indicate a dense core surrounded by a soft corona. Such organization is also supported by AFM images of the particles that display Gaussian height profiles when a low tapping force is applied, whereas the shape of the profile obtained at a higher mechanical solicitation is irregular and sharp due to deformation of the particles resulting from the tip indentation. This suggests a difference in mechanical behavior between the inner and outer parts of the particles. The formation of local chemical heterogeneities was demonstrated by use of two fluorescent polarity probes (pyrene and methyl-amino-pyrene) to be induced by the core-corona organization.  相似文献   

20.
Atomic force microscopy: a forceful way with single molecules   总被引:2,自引:0,他引:2  
The atomic force microscope (AFM) now routinely provides images that reveal subnanometer surface structures of biomolecules. The sensitivity and precision of AFM provide new opportunities for studying the mechanical properties of biomolecules and their interactions in their native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号