首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to determine whether the regulation of urea synthesis was mediated through the supply of nitrogen by amino acid-catabolizing enzymes and whether the concentration of acetylCoA would control the N-acetylglutamate concentration when the thyroid status was manipulated. Experiments were conducted on three groups of rats, each being given 6-propyl-2-thiouracil (PTU, thyroid inhibitor) without a triiodothyronine (T3) treatment, or PTU + T3, or neither PTU nor T3 (control), respectively. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the hepatic activities of serine dehydratase, threonine dehydratase, alanine transaminase (GPT) and aspartate transaminase (GOT) in rats given PTU + T3 were significantly lower than those in rats given PTU alone. The activity of glutamate dehydrogenase and the concentrations of free amino acids and acetylCoA in the liver of the PTU + T3-treated group were significantly higher than those in the group treated with PTU alone. These results suggest that the higher activity of amino acid-catabolizing enzymes in the hypothyroid (with PTU alone) rats is likely to stimulate urea synthesis.  相似文献   

2.
1. The relationship between urea synthesis, intracellular N-acetylglutamate and the capacity of rat-liver mitochondria to synthesize citrulline was investigated. 2. Treatment of rats with glucagon prior to killing results not only in an increased intramitochondrial ATP concentration and an increased capacity of the mitochondria to synthesize citrulline, but also in an increased concentration of intramitochondrial N-acetylglutamate. 3. Comparison of the rate of citrulline synthesis in mitochondria from glucagon-treated and from control rats, incubated under different conditions, shows that the increased N-acetylglutamate concentration after glucagon treatment is at least in part responsible for the observed increased capacity of the mitochondria to synthesize citrulline. 4. Ureogenic flux in isolated hepatocytes under different incubation conditions correlated with the intracellular concentration of N-acetylglutamate and with the capacity of the mitochondria to synthesize citrulline. 5. When isolated hepatocytes were incubated with NH3, ornithine, lactate and oleate, intracellular N-acetylglutamate increased about eightfold in the first 10 min; during this period the rate of urea synthesis increased considerably. 6. It is concluded that the concentration of intramitochondrial N-acetylglutamate plays an important role in the short-term control of flux through the urea cycle under different nutritional and hormonal conditions.  相似文献   

3.
Urea synthesis was studied using the isolated liver perfusion with ammonium cholride and glutamine as nitrogen sources. The rate of urea formation increases with ammonium cholorde concentration up to 5mM, and the rate remained constant in the range between 5 and 20mM of ammonium chloride as the substrate. The concentration of ammonia in the medium to support the half-maximum velocity of urea formation was 0.7mM. The rate of urea formation was stimulated by the addition of 2.5mM ornithine, and the greater part of the ornithine which was taken up into the liver was accumulated as citrulline in the presence of ammonia. A considerable accelerating effect of N-acetylglutamate on the synthetic rate was observed, but a rather high concentration of N-acetylglutamate was required in order to obtain the maximum effect possibly, because its permeability into liver cells may be limited. A marked additive effect on the rate of urea formation was observed with the combined addition of ornithine and N-acetylglutamate. The metabolic conversion of glutamine nitrogen to urea in the perfused rat liver and the effect of several compounds which stimulated urea synthesis with ammonia were further examined. The process of conversion of glutamine nitrogen to urea might be composed of the following three steps. In the first lag phase, a small amount of glutamine was removed from the medium. In the second stage, the glutamine level decreased rapidly and ammonia was accumulated in the perfusate. The third stage was a period in which glutamine concentration remained at a constant low level, and the accumulated ammonia was rapidly conversed to urea. The rate of urea formation in this third stage was found to be much higher than that with ammonia as the substrate. The maximum rate of glutamine removal was obtained at pH 7.7 of the perfusate and at a concentration of 10mM glutamine. Urea formation with glutamine was also stimulated by the addition of ornithine, malate, or N-acetylglutamate, which had accelerating effects on the urea synthesis with ammonia. This stimulation was due to an effective conversion of ammonia to urea, but no change in the rate of removal glutamine was obtained.  相似文献   

4.
The purpose of this study was to find whether the regulation of urea synthesis was mediated through the activation of N-acetylglutamate synthesis by ornithine when the thyroid status was manipulated. Experiments were done on three groups of rats, given 6-propyl-2-thiouracil (PTU, a thyroid inhibitor) without triiodothyronine (T3) treatment, treated with PTU + T3, or neither PTU nor T3 (control). Urinary excretion of urea and the liver concentrations of ornithine and N-acetylglutamate in rats given PTU + T3 were significantly lower than in rats given PTU alone. The liver concentration of N-acetylglutamate was correlated with the liver concentration of ornithine (r = 0.920, p < 0.001). Ornithine administration (0.5 mmol/100g body wt) elevated the liver concentration of N-acetylglutamate in all three groups. The results suggest that the greater concentration of ornithine in the hypothyroid (PTU alone) rats is likely to increase the N-acetylglutamate concentration in liver and stimulate urea synthesis.  相似文献   

5.
Valproate (0.5-5 mM) strongly inhibited urea synthesis in isolated rat hepatocytes incubated with 10 mM-alanine and 3 mM-ornithine. Valproate at the same concentrations markedly decreased concentrations of N-acetylglutamate, an essential activator of carbamoyl-phosphate synthetase I (EC 6.3.4.16), in parallel with the inhibition of urea synthesis by valproate. This compound also lowered the cellular concentration of acetyl-CoA, a substrate of N-acetylglutamate synthase (EC 2.3.1.1); glutamate, aspartate and citrulline were similarly decreased. Valproate in a dose up to 2 mM did not significantly affect the cellular concentration of ATP and had no direct effect on N-acetylglutamate synthesis, carbamoyl-phosphate synthetase I and ornithine transcarbamoylase (EC 2.1.3.3) activities.  相似文献   

6.
1 and 10 mmol/l isovalerate strongly inhibited urea synthesis in isolated rat hepatocytes incubated with 10 mmol/l alanine and 3 mmol/l ornithine. Isovalerate also markedly decreased N-acetylglutamate levels, and the decrease correlated with the inhibition of urea synthesis by isovalerate. This compound also lowered cellular levels of acetyl-CoA, a substrate of N-acetylglutamate synthase (EC 2.3.1.1). Isovalerate did not significantly affect the cellular levels of ATP and had no direct effect on N-acetylglutamate synthase activity. These results suggest that the inhibition of urea synthesis by isovalerate is due to decrease in N-acetylglutamate levels.  相似文献   

7.
In hepatocytes, urea synthesis from glutamine is independent of added ornithine, even when rates are high after stimulation of glutamine metabolism by dibutyryl cyclic AMP, phenylephrine or vasopressin. Incubation with glutamine increases tissue [ornithine]. The increases parallel those of [N-acetylglutamate] under different conditions. The ornithine requirement of urea synthesis increases with increasing supply of ammonia. A function of the unique, highly regulated, glutaminase of liver may be to regulate ornithine synthesis.  相似文献   

8.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

9.
Mitochondrial urea cycle enzymes in rats treated with sodium benzoate   总被引:1,自引:0,他引:1  
Since sodium benzoate, which is widely used to treat hyperammonemia its effect on mitochondrial urea cycle enzymes was investigated. its effect on mitochondrial urea cycle enzymes was investigated. Sodium benzoate was administered to urease treated hyperammonemic rats and controls. In both groups no interference with the activity of carbamylphosphate synthetase, ornithine carbamyltransferase and N-acetylglutamate synthetase in the liver could be observed at concentrations of benzoate in plasma found in hyperammonemic patients. Careful monitoring of plasma levels reduces benzoate toxicity as shown in a patient with argininosuccinic aciduria.  相似文献   

10.
After the urea cycle was proposed, considerable efforts were put forth to identify critical intermediates. This was then followed by studies of dietary and nutritional control of urea cycle enzyme activity and allosteric effectors of urea cycle enzymes. Correlation of urea cycle enzyme activity with isolated cell experiments indicated conditions where enzyme activity would be rate limiting. At physiological levels of ammonia the activation of carbamoyl-phosphate synthetase (EC 6.3.4.16) by N-acetylglutamate (NAG) is important. Various levels of NAG corresponded well with changes in the rate of citrulline and urea synthesis. Arginine was found to be an allosteric activator of N-acetylglutamate synthetase (EC 2.3.1.1). Therefore, it was possible that the rate of carbamoyl phosphate synthesis was dependent on the level of urea cycle intermediates, particularly arginine. Evidence for arginine in the regulation of NAG synthesis is not as clear as for NAG on carbamoyl phosphate synthetase I. The concentration of hepatic arginine is not necessarily an indication of the mitochondrial concentration. Only mitochondrial arginine stimulates the N-acetylglutamate synthetase. Recent studies indicate that the mitochondrial concentration of arginine is higher than the cytosolic concentration and is well above the Ka for N-acetylglutamate synthetase. Therefore, it appears that changes in arginine concentration are not physiologically important in regulating levels of NAG. However, it is possible that responses to the effector may vary with time after eating, and it may be this responsiveness that controls the level of NAG and thereby urea synthesis.  相似文献   

11.
The effect of sodium benzoate administration on amino acids in the liver and plasma and various metabolites in the liver was studied. Changes in glutamine and ornithine were noted only at a higher dose (10 mmol/kg body wt) of benzoate, whereas even a lower dose caused a significant decrease in glycine, serine, and alanine levels of plasma and liver. A dose- and time-dependent decrease in glycine levels was studied. A decrease of up to 50% in the glycine concentration may limit its own transport into mitochondria and availability for the formation of hippurate. A decrease in alanine may have resulted from stimulation of gluconeogenesis from alanine, by increased ammonia. Among the metabolites studied, ATP and acetyl-CoA decreased and ammonia increased significantly even at a lower dose (5 mmol/kg body wt) of benzoate. The compounds that require ATP for their synthesis such as N-acetylglutamate and glutamine decreased significantly only at the higher dose of benzoate, whereas urea and glutathione levels were unaffected under our experimental conditions.  相似文献   

12.
Control of ureogenesis   总被引:3,自引:0,他引:3  
Control of urea synthesis was studied in rat hepatocytes incubated with physiological mixtures of amino acids in which arginine was replaced by equimolar amounts of ornithine. The following observations were made. Intramitochondrial carbamoyl phosphate was always below 0.1 mM. Only when ornithine was absent and when, in addition, the concentration of amino acids was higher than four times their plasma concentration, intramitochondrial carbamoyl phosphate rose up to about 3 mM; under these conditions ammonia accumulated in the medium. The relationship between ornithine-cycle flux and the concentration of the cycle intermediates at varying amino acid concentration indicated that under near-physiological conditions the ornithine-cycle enzymes are far from being saturated with their subsidiaries. Moderate concentrations of norvaline had no effect on the rate of urea synthesis unless the cells were severely depleted of ornithine. Activation of carbamoyl-phosphate synthetase (ammonia) by addition of N-carbamoylglutamate only slightly stimulated urea production at all amino acid concentrations. However, in the presence of the activator the curve relating ornithine-cycle flux to the steady-state ammonia concentration was shifted to lower concentrations of ammonia. The intramitochondrial concentration of carbamoyl phosphate in rat liver in vivo was below 0.1 mM. This value is far below the concentration required for substantial inhibition of carbamoyl-phosphate synthetase. It is concluded that in vivo the function of activity changes in carbamoyl-phosphate synthetase, via the well-documented alterations in the intramitochondrial concentration of N-acetylglutamate, is to buffer the intrahepatic ammonia concentration rather than to affect urea production per se. At constant concentration of ammonia the rate of urea production is entirely controlled by the activity of carbamoyl-phosphate synthetase.  相似文献   

13.
Capacities for urea synthesis and amino acid patterns in the perfused livers isolated from rats fed low and high-protein diets were compared. Urea formation with amjonium chlorode as the nitrogen source in perfused livers isolated from rats fed on a 70% casein diet was rapid and the efficiency of conversion of ammonia to urea was 97.9%. However, that in livers isolated from rats fed on a 5% casein diet was much slower and the efficiency of conversion of ammonia to urea was only 36.1%. The ratios of the rate of urea formation from ammonium chloride to activity of ornithine transcarbamylase [EC 2.1.3.3.] in the perfused livers of rats fed on 5 and 70% casein diets were calculated. The ratio of the former condition was much lower than that of the latter. The ratios reached nearly the same level by the addition of ornithine and N-acetylglutamate, the addition of which to the perfusate caused marked elevation of the ratios in both cases. In the perfused livers from rats fed on a 5% casein diet a considerable portion of the ammonia added to the perfusate was fixed into an amino ro an amide group of amino acids such as alamin, aspartate, and glutamine. On the other hand, in the perfused livers from rats fed on a 70% casein diet most of the ammonia added was converted to urea. The regulation of urea synthesis and the relation between anabolism and catabolism of amino acids in rat livers subjected to different dietary conditions were compared.  相似文献   

14.
Streptozotocin induced diabetes in rats increased the activities of the three mitochondrial enzymes, carbamylphosphate synthetase, ornithine transcarbamylase and N-acetylglutamate synthetase, but not of the cytosolic N-acetylglutamate deacylase. Levels of both N-acetylglutamate and arginine, which are activators of carbamylphosphate synthetase and N-acetylglutamate synthetase respectively, increased in diabetes. These results serve to explain the increase both of mitochondrial citrulline and urea formation in hepatocytes and the increased urea excretion in diabetes.  相似文献   

15.
Increases in dietary protein have been reported to increase the rate of citrulline synthesis and the level of N-acetylglutamate in liver. We have confirmed this effect of diet on citrulline synthesis in rat liver mitochondria and show parallel increases in N-acetylglutamate concentration. The magnitude of the effect of arginine in the suspending medium on citrulline synthesis was also dependent on dietary protein content. Mitochondria from rats fed on a protein-free diet initially contained low levels of N-acetylglutamate, and addition of arginine increased the rate of its synthesis. Citrulline synthesis and acetylglutamate content in these mitochondria increased more than 5-fold when 1 mM-arginine was added. A diet high in protein results in mitochondria with increased N-acetylglutamate and a high rate of citrulline synthesis; 1 mM-arginine increased citrulline synthesis in such mitochondria by only 36%. The concentration of arginine in portal blood was 47 microM in rats fed on a diet lacking protein, and 182 microM in rats fed on a diet containing 60% protein, suggesting that arginine may be a regulatory signal to the liver concerning the dietary protein intake. The rates of citrulline synthesis were proportional to the mitochondrial content of acetylglutamate in mitochondria obtained from rats fed on diets containing 0, 24, or 60% protein, whether incubated in the absence or presence of arginine. Although the effector concentrations are higher than the Ka for the enzymes, these results support the view that concentrations of both arginine and acetylglutamate are important in the regulation of synthesis of citrulline and urea. Additionally, the effects of dietary protein level (and of arginine) are exerted in large part by way of modulation of the concentration of acetylglutamate.  相似文献   

16.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

17.
The effect of ornithine on carbamoylphosphate formation of rat liver mitochondria treated with Triton X 100 was studied. The rate of carbamoylphosphate accumulation and citrulline formation depended on the ATP-, Pi-, N-acetylglutamate and protein concentration. At optimal conditions the rate of citrulline formation was at least 1.5-fold higher than the rate at which carbamoylphosphate accumulated (ornithine absent). A significant correlation between the amount of carbamoylphosphate formed and the citrulline/carbamoylphosphate ratio (ornithine effect) was found. In mitochondria the presence of a carbamoylphosphate degrading enzyme could be demonstrated. This enzyme may be one factor for the differences in the rate of carbamoylphosphate accumulation and the rate of citrulline synthesis.  相似文献   

18.
The ornithine aminotransferase [EC 2.6.1.13] content of Morris hepatoma 44 is about 15 times higher than that in normal liver. The turnover rates of ornithine amino-transferase in hepatoma 44 and host liver were determined using L-[14C]leucine. Studies on the incorporation of radioactive leucine into ornithine aminotransferase in rats bearing hepatoma 44 showed that the rate of synthesis of this enzyme in the hepatoma was about 5-fold higher than that in host liver. The half-life of ornithine aminotransferase in host liver was 0.98 day, which was the same as that in normal liver, whereas that in hepatoma 44 was 3.5 days. The rate constant of degradation of ornithine aminotransferase in hepatoma 44 was significantly less than that in host liver. These results show that the high ornithine aminotransferase content of hepatoma 44 is due to both increase in its rate of synthesis and decrease in its rate of degradation.  相似文献   

19.
A low citrullinogenesis (less than 60 per cent of the adult value) was observed throughout the suckling period when mitochondria isolated from newborn rat liver were incubated in vitro with L-glutamate or succinate as oxidizable substrates. The adult value was reached after weaning. From birth to weaning, intact mitochondria synthesized more citrulline when supplemented with L-glutamate than with succinate. The low citrullinogenesis could not be explained by low carbamoylphosphate synthetase-I and ornithine transcarbamoylase activities that reached adult values at birth. The decreased citrullinogenesis seen for the first three days of life seemed to be related to the low intramitochondrial concentration of N-acetylglutamate, an activator of the carbamoylphosphate synthetase-I. The concentration of this activator did not differ from that reported for adult rat liver mitochondria after the fourth day of life. The discrepancy between the normal value of N-acetylglutamate concentration and the low activity of the N-acetylglutamate synthetase (15 to 30 per cent of the adult activity) is discussed on the basis of acetyl-CoA or L-glutamate availability in mitochondria isolated from newborn or young rats.  相似文献   

20.
1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号