首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boh B  Herholz SC  Lappe C  Pantev C 《PloS one》2011,6(7):e21458
In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.  相似文献   

2.
Mismatch Negativity (MMN) is an N-methyl-d-aspartic acid (NMDA)-mediated, negative deflection in human auditory evoked potentials in response to a cognitively discriminable change. MMN-like responses have been extensively investigated in animal models, but the existence of MMN equivalent is still controversial. In this study, we aimed to investigate how closely the putative MMN (MMNp) in rats exhibited the comparable properties of human MMN. We used a surface microelectrode array with a grid of 10×7 recording sites within an area of 4.5×3.0 mm to densely map evoked potentials in the auditory cortex of anesthetized rats under the oddball paradigm. Firstly, like human MMN, deviant stimuli elicited negative deflections in auditory evoked potentials following the positive middle-latency response, termed P1. Secondly, MMNp exhibited deviance-detecting property, which could not be explained by simple stimulus specific adaptation (SSA). Thirdly, this MMNp occurred focally in the auditory cortex, including both the core and belt regions, while P1 activation focus was obtained in the core region, indicating that both P1 and MMNp are generated in the auditory cortex, yet the sources of these signals do not completely overlap. Fourthly, MMNp significantly decreased after the application of AP5 (D-(-)-2-amino-5-phosphonopentanoic acid), an antagonist at NMDA receptors. In stark contrast, AP5 affected neither P1 amplitude nor SSA of P1. These results provide compelling evidence that the MMNp we have examined in rats is functionally comparable to human MMN. The present work will stimulate translational research into MMN, which may help bridge the gap between electroencephalography (EEG)/magnetoencephalography (MEG) studies in humans and electrophysiological studies in animals.  相似文献   

3.
The work investigated event-related potentials, mismatch negativity (MMN), and P3a component under dichotic stimulation with deviant stimuli simulating abrupt or smooth displacement of auditory images to the left or to the right from the head midline by means of interaural time delay introduced into the deviant stimuli. Repetitive standard stimuli were localized near the head midline. All deviant stimuli elicited mismatch negativity and P3a component. It was shown the MMN for smooth deviant motion was lower than that for the abrupt deviant displacement. MMN amplitude for both deviant types obviously depended on interaural time delay, which confirms that MMN might be considered as a measure of the auditory system spatial discriminative ability. The P3a component demonstrated the same amplitude dependences as the MMN. The results obtained are discussed in respect to manifestation of the processes underlying the auditory motion detection in the event-related potentials.  相似文献   

4.
Taaseh N  Yaron A  Nelken I 《PloS one》2011,6(8):e23369
Stimulus-specific adaptation (SSA) is the specific decrease in the response to a frequent ('standard') stimulus, which does not generalize, or generalizes only partially, to another, rare stimulus ('deviant'). Stimulus-specific adaptation could result simply from the depression of the responses to the standard. Alternatively, there may be an increase in the responses to the deviant stimulus due to the violation of expectations set by the standard, indicating the presence of true deviance detection. We studied SSA in the auditory cortex of halothane-anesthetized rats, recording local field potentials and multi-unit activity. We tested the responses to pure tones of one frequency when embedded in sequences that differed from each other in the frequency and probability of the tones composing them. The responses to tones of the same frequency were larger when deviant than when standard, even with inter-stimulus time intervals of almost 2 seconds. Thus, SSA is present and strong in rat auditory cortex. SSA was present even when the frequency difference between deviants and standards was as small as 10%, substantially smaller than the typical width of cortical tuning curves, revealing hyper-resolution in frequency. Strong responses were evoked also by a rare tone presented by itself, and by rare tones presented as part of a sequence of many widely spaced frequencies. On the other hand, when presented within a sequence of narrowly spaced frequencies, the responses to a tone, even when rare, were smaller. A model of SSA that included only adaptation of the responses in narrow frequency channels predicted responses to the deviants that were substantially smaller than the observed ones. Thus, the response to a deviant is at least partially due to the change it represents relative to the regularity set by the standard tone, indicating the presence of true deviance detection in rat auditory cortex.  相似文献   

5.
Schizophrenia is a severe mental disorder associated with disturbances in perception and cognition. Event-related potentials (ERP) provide a mechanism for evaluating potential mechanisms underlying neurophysiological dysfunction in schizophrenia. Mismatch negativity (MMN) is a short-duration auditory cognitive ERP component that indexes operation of the auditory sensory (`echoic') memory system. Prior studies have demonstrated impaired MMN generation in schizophrenia along with deficits in auditory sensory memory performance. MMN is elicited in an auditory oddball paradigm in which a sequence of repetitive standard tones is interrupted infrequently by a physically deviant (`oddball') stimulus. The present study evaluates MMN generation as a function of deviant stimulus probability, interstimulus interval, interdeviant interval and the degree of pitch separation between the standard and deviant stimuli. The major findings of the present study are first, that MMN amplitude is decreased in schizophrenia across a broad range of stimulus conditions, and second, that the degree of deficit in schizophrenia is largest under conditions when MMN is normally largest. The pattern of deficit observed in schizophrenia differs from the pattern observed in other conditions associated with MMN dysfunction, including Alzheimer's disease, stroke, and alcohol intoxication.  相似文献   

6.
Dog cognition research tends to rely on behavioural response, which can be confounded by obedience or motivation, as the primary means of indexing dog cognitive abilities. A physiological method of measuring dog cognitive processing would be instructive and could complement behavioural response. Electroencephalogram (EEG) has been used in humans to study stimulus processing, which results in waveforms called event-related potentials (ERPs). One ERP component, mismatch negativity (MMN), is a negative deflection approximately 160-200 ms after stimulus onset, which may be related to change detection from echoic sensory memory. We adapted a minimally invasive technique to record MMN in dogs. Dogs were exposed to an auditory oddball paradigm in which deviant tones (10% probability) were pseudo-randomly interspersed throughout an 8 min sequence of standard tones (90% probability). A significant difference in MMN ERP amplitude was observed after the deviant tone in comparison to the standard tone, t5 = −2.98, p = 0.03. This difference, attributed to discrimination of an unexpected stimulus in a series of expected stimuli, was not observed when both tones occurred 50% of the time, t1 = −0.82, p > 0.05. Dogs showed no evidence of pain or distress at any point. We believe this is the first illustration of MMN in a group of dogs and anticipate that this technique may provide valuable insights in cognitive tasks such as object discrimination.  相似文献   

7.
Althen H  Grimm S  Escera C 《PloS one》2011,6(12):e28522
The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.  相似文献   

8.
M Cornella  S Leung  S Grimm  C Escera 《PloS one》2012,7(8):e43604
Auditory deviance detection in humans is indexed by the mismatch negativity (MMN), a component of the auditory evoked potential (AEP) of the electroencephalogram (EEG) occurring at a latency of 100-250 ms after stimulus onset. However, by using classic oddball paradigms, differential responses to regularity violations of simple auditory features have been found at the level of the middle latency response (MLR) of the AEP occurring within the first 50 ms after stimulus (deviation) onset. These findings suggest the existence of fast deviance detection mechanisms for simple feature changes, but it is not clear whether deviance detection among more complex acoustic regularities could be observed at such early latencies. To test this, we examined the pre-attentive processing of rare stimulus repetitions in a sequence of tones alternating in frequency in both long and middle latency ranges. Additionally, we introduced occasional changes in the interaural time difference (ITD), so that a simple-feature regularity could be examined in the same paradigm. MMN was obtained for both repetition and ITD deviants, occurring at 150 ms and 100 ms after stimulus onset respectively. At the level of the MLR, a difference was observed between standards and ITD deviants at the Na component (20-30 ms after stimulus onset), for 800 Hz tones, but not for repetition deviants. These findings suggest that detection mechanisms for deviants to simple regularities, but not to more complex regularities, are already activated in the MLR range, supporting the view that the auditory deviance detection system is organized in a hierarchical manner.  相似文献   

9.
Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone‐like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event‐related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double‐blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency‐deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Bioelectromagnetics 34:31–42, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was simulated using generalised (Bayesian) filtering – a biologically plausible scheme for probabilistic inference on the hidden states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative effects of deviant probability and magnitude on the MMN – in terms of latency and amplitude – and makes quantitative predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding of the MMN and – more generally – illustrates the potential for developing computationally informed dynamic causal models of empirical electromagnetic responses.  相似文献   

11.
Auditory electric and magnetic P50(m), N1(m) and MMN(m) responses to standard, deviant and novel sounds were studied by recording brain electrical activity with 25 EEG electrodes simultaneously with the corresponding magnetic signals measured with 122 MEG gradiometer coils. The sources of these responses were located on the basis of the MEG responses; all were found to be in the supratemporal plane. The goal of the present paper was to investigate to what degree the source locations and orientations determined from the magnetic data account for the measured EEG signals. It was found that the electric P50, N1 and MMN responses can to a considerable degree be explained by the sources of the corresponding magnetic responses. In addition, source-current components not detectable by MEG were shown to contribute to the measured EEG signals.  相似文献   

12.
An analysis of airplane accidents reveals that pilots sometimes purely fail to react to critical auditory alerts. This inability of an auditory stimulus to reach consciousness has been coined under the term of inattentional deafness. Recent data from literature tends to show that tasks involving high cognitive load consume most of the attentional capacities, leaving little or none remaining for processing any unexpected information. In addition, there is a growing body of evidence for a shared attentional capacity between vision and hearing. In this context, the abundant information in modern cockpits is likely to produce inattentional deafness. We investigated this hypothesis by combining electroencephalographic (EEG) measurements with an ecological aviation task performed under contextual variation of the cognitive load (high or low), including an alarm detection task. Two different audio tones were played: standard tones and deviant tones. Participants were instructed to ignore standard tones and to report deviant tones using a response pad. More than 31% of the deviant tones were not detected in the high load condition. Analysis of the EEG measurements showed a drastic diminution of the auditory P300 amplitude concomitant with this behavioral effect, whereas the N100 component was not affected. We suggest that these behavioral and electrophysiological results provide new insights on explaining the trend of pilots’ failure to react to critical auditory information. Relevant applications concern prevention of alarms omission, mental workload measurements and enhanced warning designs.  相似文献   

13.
In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey.  相似文献   

14.
By using the mismatch negativity (MMN) component of the event-related potential, it was demonstrated that changes within a repetitively presented tone pattern can be automatically (i.e., involuntarily and attention-independently) detected by the human brain. Patterns consisting of 5 tones, immediately succeeding one another and differing in frequency, were delivered to subjects reading a self-selected book. There was a frequent , “standard” (P = 0.90) and an infrequent, “deviant” (P = 0.10) pattern presented in random order. The deviant pattern elicited the MMN even when the auditory stimulation was continuous, that is, no empty between-pattern interval indicated the beginning of a tone pattern. It may be concluded that the MMN mechanism is not necessarily timed by an “external” reference but is able to use “internal” units extracted from the repetitive structure inherent in the incessant flow of acoustic signals. The MMN paradigm seems to provide a tool to illuminate the organization of acoustic signals into auditory units.  相似文献   

15.
Mismatch negativity (MMN) and N2b were elicited during a selective dichotic-listening task in 16 young (Y), 16 middle-aged (M) and 19 elderly (E) subjects to evaluate automatic and effortful memory comparison of auditory stimuli. Sequences of standard (80%) and deviant (20%) tones were dichotically presented to subjects in two runs. In each run, subjects were instructed to give a button-press response to the deviant (target) tones in the ear designated as attended and to ignore the input to the other ear.Peak latencies, peak amplitudes and mean amplitudes were calculated for MMN and N2b components in each subject. MMN latency and amplitude were quite stable regardless of age, while N2b latency was significantly longer in M and E subjects than in Y subjects. These results are interpreted as reflecting that automatic processes of comparison in auditory memory of stimuli presented at short interstimulus intervals remain quite stable from 23 to 77 years of age; however, those requiring attentional effort decline with age.  相似文献   

16.
To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100–200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.  相似文献   

17.
Eriksson J  Villa AE 《Bio Systems》2005,79(1-3):207-212
Evoked potentials were recorded from the auditory cortex of both freely moving and anesthetized rats when deviant sounds were presented in a homogenous series of standard sounds (oddball condition). A component of the evoked response to deviant sounds, the mismatch negativity (MMN), may underlie the ability to discriminate acoustic differences, a fundamental aspect of auditory perception. Whereas most MMN studies in animals have been done using simple sounds, this study involved a more complex set of sounds (synthesized vowels). The freely moving rats had previously undergone behavioral training in which they learned to respond differentially to these sounds. Although we found little evidence in this preparation for the typical, epidurally recorded, MMN response, a significant difference between deviant and standard evoked potentials was noted for the freely moving animals in the 100-200 ms range following stimulus onset. No such difference was found in the anesthetized animals.  相似文献   

18.
Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN), a component of auditory evoked potentials (AEPs), reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.  相似文献   

19.
Twelve subjects were tested using a 3-tone auditory oddball paradigm consisting of a standard 1000 Hz tone (P = 80%) and two deviants, namely, a 1200 Hz tone and a 2000 Hz tone (both P = 10%). Testing took place in 3 conditions: (1) attend, in which the subject had to count one of the deviant tones; (2) ignore, in which the subject read a book; and (3) sleep, in which the subject was encouraged to go to sleep during presentation of the tones.In the awake conditions stimulus deviance elicited mismatch negativity (MMN) and P3. During drowsiness, no separate mismatch negativity (MMN) could be detected, but the 2000 Hz tone evoked a broad fronto-central early negative deflection, suggesting an overlap of N1 and MMN. In the same condition, P210, N330 and P430 appeared, all being sensitive to magnitude of deviance. During stage 2, the P210, N330 and P430 amplitudes increased, most notably to the large deviant.These data indicate that differential processing of auditory inputs is maintained during drowsiness and stage 2 sleep, but do not support the notion that MMN or P3 activity comparable to the waking state occurs to oddball stimuli during this stage. It is hypothesised that during light sleep, scanning of the environment is performed by a different system than in the awake state and that during drowsiness a gradual switch between these two systems takes place.  相似文献   

20.
Previous studies on the effects of the mobile phone electromagnetic field (EMF) on various event‐related potential (ERP) components have yielded inconsistent and even contradictory results, and often failed in replication. The mismatch negativity (MMN) is an auditory ERP component elicited by infrequent (deviant) stimuli differing in some physical features from the repetitive frequent (standard) stimuli in a sound sequence. The MMN provides a sensitive measure for cortical auditory stimulus feature discrimination, regardless of attention and other contaminating factors. In this study, MMN responses to duration, intensity, frequency, and gap changes were recorded in healthy young adults (n = 17), using a multifeature paradigm including several types of auditory change in the same stimulus sequence, while a GSM mobile phone was placed on either ear with the EMF (902 MHz pulsed at 217 Hz; SAR1g = 1.14 W/kg, SAR10g = 0.82 W/kg, peak value = 1.21 W/kg, measured with an SAM phantom) on or off. An MMN was elicited by all deviant types, while its amplitude and latency showed no significant differences due to EMF exposure for any deviant types. In the present study, we found no conclusive evidence that acute exposure to GSM mobile phone EMF affects cortical auditory change detection processing reflected by the MMN. Bioelectromagnetics 30:241–248, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号