首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinants of territory size in the pomacentrid reef fish,Parma victoriae   总被引:4,自引:0,他引:4  
Summary Factors governing the size of territories defended by the pomacentrid reef fish, Parma victoriae, were investigated, prompted by contradictory predictions in the literature concerning the effects of food supply and competitors. Observations were carried out over the non-breeding period (March–October) on a medium density population in which territories were partially contiguous. The territory size of adult fish varied between 3 and 26 m2, and was inversely correlated with local densities of conspecifics. The same range in territory size was found for both males and females, which did not differ in the time they spent on territory defence and foraging activities. No correlation existed between territory size and the abundance of algal food, body size, age or time spent on territory defence. Also, there was little variation in territory size over time, despite seasonal changes in the abundance of food algae.Experimental reduction of food supplies on isolated territories of males and females had no effect on territory size. In a higher density habitat an experiment was carried out in which population density and food abundance were simultaneously manipulated. This showed that territory size was primarily determined by intraspecific interactions, as territories exhibited considerable increases in size upon removal of neighbours. No changes in the size of defended areas resulted from either artificial increases or decreases of food levels. There were also no changes in the time spent on defence of territories, foraging time or feeding rates associated with food manipulations or territory expansion, which suggested that food was not a limited resource. This conflicted with current theories proposed to explain territory defence and expansion. It is hypothesized that intraspecific interactions constrain territory size well below the optimum in terms of the abundance of preferred food algal species.  相似文献   

2.
An experimental analysis of self-thinning in juvenile steelhead trout   总被引:1,自引:0,他引:1  
Ernest R. Keeley 《Oikos》2003,102(3):543-550
Mobile animal populations have been proposed to decline in density according to a slope based on the allometry of metabolic requirements or space requirements. In salmonid fishes, metabolic rate and food consumption scale to body mass by the exponent 0.87 and 0.73, respectively; whereas the territory size of steelhead trout scales to body mass by the exponent 0.86. Experimental cohorts of juvenile steelhead trout ( Oncorhynchus mykiss ) were used to test the hypothesis that mobile animal populations composed of individuals with indeterminate growth decline in density as a result of self-thinning. After controlling for experimentally manipulated levels of food abundance and stocking density, cohorts of steelhead trout declined in density with increasing body size according to a slope closest to the allometry of food consumption. Densities of steelhead trout were inversely related to average mass by the exponent −0.74. Despite the similarity to the food consumption slope, a relatively wide confidence interval also precluded distinguishing the slope either the metabolic rate or territory size slopes. Data from the literature were also examined to determine if there was general support for the idea of self-thinning in natural populations of stream-dwelling salmonid fish. Although not all data suggest that populations of salmonids in streams decline as a result of density-dependent intraspecific competition, at least some appear to fit the idea of self-thinning; especially when density is above a minimum level of habitat saturation.  相似文献   

3.
Imre I  Grant JW  Keeley ER 《Oecologia》2004,138(3):371-378
Optimal territory size models predict a decrease in territory size with increasing food abundance. However, most of these models may not be applicable to juvenile salmonids in streams, because they defend contiguous territories at high densities. The optimal size of a contiguous territory is predicted to (1) be independent of food abundance when food is rare and (2) decrease only when food abundance is high enough to induce a reduction in territory size below the contiguous optimum. To test these predictions, we raised equal densities of juvenile steelhead trout in outdoor stream channels over a 32-fold range of food abundance in the absence of emigration for 25 days. Increasing competition for scarce food resulted in increasing mortality, higher willingness to emigrate, higher variance in body mass, lower growth, lower population density and lower biomass. The size of territories decreased with increasing local population density, and increased with increasing body size. However, territory size did not change with food abundance, a result consistent with the prediction of a contiguous territory size model. On average, total salmonid biomass increased 5.7 times in response to the 32-fold increase in food abundance. Our data provide strong support for an earlier quantitative relationship between the abundance of stream salmonids and their food.  相似文献   

4.
Shadow competition in wild juvenile sea-trout   总被引:3,自引:1,他引:2  
Shadow competition occurs in a group of sit-and-wait predators when those closer to a source of mobile prey reduce the feeding success of those further from the prey source. It was examined in territorial juvenile sea trout Salmo trutta in a small stream. The fry formed groups of two to six fish with adjacent territories and a social hierarchy within each group. It was hypothesized that: (i) as group size increased, the mean number of prey eaten per fish within a group decreased and the variability in prey consumption between fish increased; (ii) prey consumption by individual fish decreased with increasing distance from the food source; (iii) group size increased as the mean water velocity immediately upstream from a group, and hence potential drifting food, increased. Five groups of fry were fed on small shrimps released upstream from each group at a rate of one every 15 s over a 10 min period, this procedure being repeated over 5 days to provide five replicates per group. Experiments were performed three times in 1967, 1969 and 1974 to provide information on 45 groups of fry. The first and third hypotheses were supported, but the second was only partially supported. In 1967 and 1969, territory size and shrimp consumption by individual fry decreased with increasing distance from the food source. This also occurred in 1974, except during a critical period for survival when fry density was exceptionally high with large numbers of sea trout lacking territories. This resulted in sea trout fry with the largest territories eating fewer shrimps than those with medium-sized territories because they spent more time defending their territories against sea trout lacking territories. This study is the first to demonstrate shadow competition in a vertebrate species, but has also shown that territorial defence may modify the consequences of shadow competition when densities are high and there is strong competition for the acquisition of a territory.  相似文献   

5.
The grazing fish, ayu,Plecoglossus altivelis Temminck & Schlegel, establishes feeding territorialiry during the young stage. The population density fluctuates from year to year by more than a hundredfold, but the determinant of territory size is less well known. The feeding territoriality of ayu was examined under simulated habitat conditions where fish density was manipulated and food resources were renewable. Fish competed for algae attached to the substrata and were divided into residents with territories, and floaters without territories. By experimental alteration of fish density the number of residents increased with density and rerritory size decreased with density. Floaters intruded into territories in a school to feed on algae, which induced overt aggression of the resident and reduced the productivity of algae growing there. Both the intruding frequency of floaters over territorial areas and their feeding pressure on algae increased at higher floater density. Floaters functioned to shift cost-benefit relationships for various territory sizes. They acted as food competitors to restrict territory size below a maximum through competitive interference. Although the growth rate of residents was inversely related to fish density, residents grew faster than floaters in each group. Under a given set of competitor abundances, economic defensibility determined territory size.  相似文献   

6.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

7.
1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species. 5. We hypothesize that divergent digestive strategies, which are common and well documented among terrestrial vertebrates, may be an important but overlooked aspect of adaptive strategies of juvenile salmonids, and fish in general.  相似文献   

8.
We developed models to predict the effect of water velocity on prey capture rates and on optimal foraging velocities of two sympatric juvenile salmonids, coho salmon and steelhead. Mean fish size was ~80 mm, the size of age I+ coho and steelhead during their second summer in Southeast Alaska streams, when size overlap suggests that competition might be strongest. We used experimentally determined prey capture probabilities to estimate the effect of water velocity on gross energy intake rates, and we modeled prey capture costs using experimental data for search and handling times and published models of swimming costs. We used the difference between gross energy intake and prey capture costs to predict velocities at which each species maximized net energy intake rate. Predicted prey capture rates for both species declined from ~75 to 30–40 prey/h with a velocity increase from 0.30 to 0.60 m·s−1. We found little difference between coho and steelhead in predicted optimum foraging velocities (0.29 m·s−1 for coho and 0.30 m·s−1 for steelhead). Although prey capture ability appears to be more important than are prey capture costs in determining optimum foraging velocities, capture costs may be important for models that predict fish growth. Because coho are assumed to pay a greater swimming cost due to a less hydrodynamic body form, we also modeled 10 and 25% increases in hydrodynamic drag to assess the effect of increased prey capture costs. This reduced optimum velocity by 0 and 0.01 m∙s−1, respectively. Habitat segregation among equal-sized coho and steelhead does not appear to be related to the effects of water velocity on their respective foraging abilities.  相似文献   

9.
1. We contrast the value of four different models to predict variation in territory size as follows: resource density (the ideal free distribution), population density, group size and intruder pressure (relative resource-holding potential). In the framework of the resource dispersion hypothesis, we test the effect of resource abundance and spatial variation in resource distribution on the age/sex composition of social groups. 2. We explore these drivers of territory size and group size/composition in Ethiopian wolves Canis simensis in the Bale Mountains, Ethiopia, using fine-scale distribution maps of their major prey species based on satellite-derived vegetation maps. 3. The number of adult males is correlated with territory size, while prey density, wolf population density and intruder pressure are not associated with territory size. On average, each additional adult male increases territory size by 1.18 km(2). 4. Prey abundance increases with territory size (average biomass accumulation of 6.5 kg km(-2)), and larger territories provide greater per capita access to prime foraging habitat and prey. 5. The age/sex composition of wolf packs is more closely related to territory quality than territory size. Subordinate adult females are more likely to be present in territories with greater proportions of prime giant molerat Tachyoryctes macrocephalus habitat (i.e. >80% of Web Valley territories and >20% in Sanetti/Morebawa), and more yearlings (aged 12-23 months) occur in territories with greater overall prey biomass. 6. Wolf packs with restricted access to good foraging habitat tend to defend more exclusive territories, having a lower degree of overlap with neighbouring packs. 7. The greater per capita access to prey in large groups suggests a strong evolutionary advantage of collaborative territorial defence in this species, although the relative costs of territorial expansion vs. exclusion depend upon the spatial distribution of resources. We propose a model whereby territory size is determined by the number of adult males, with the presence of subordinate females and yearlings dependent on the quality of habitat, and the abundance and distribution of prey, incorporated within territory boundaries.  相似文献   

10.
Using an individual-based age-structured population model (a combination of O'Brien's apparent-prey-size approach, Eggers's reactive-field-volume model, and Holling's disk equation), we could predict that (1) a Daphnia population could be kept at low density by fish predation irrespective of food level, with greater recruitment at higher food being instantly compensated for by raised mortality reflecting increased predation, and (2) Daphnia density levels are species specific and inversely related to both body size at first reproduction and the reaction distance at which a foraging fish sees its Daphnia prey. These two hypotheses were experimentally tested in outdoor mesocosms with two Daphnia species of different body sizes grown in the absence or presence of fish that were allowed to feed for 2-3 h each evening. While each Daphnia quickly reached high density with reproduction halted by food limitation in the absence of fish, the populations stayed at much lower species-specific density levels, similar in low and high food concentrations, in the presence of fish. This suggests that our model offers a reasonable mechanistic explanation for the coexistence of large- and small-bodied zooplankton in proportions reflecting their body sizes throughout habitats comprising a wide productivity spectrum, with each species at a density level at which it becomes included in a predator's diet.  相似文献   

11.
Neolamprologus moorii, a small herbivorous cichlid of Lake Tanganyika, defends its territory against food competitors. Territory size and territorial defense were compared between two sites at different depths. In the shallow site, more fishes intruded into the territories than in the deep site, owing to the higher density fish population in the former. The territory holders in the shallow site attacked intruders more often, although the ratio of attacks to number of intruders was similar to that of the deep site. The territories in the deep site were larger and contained a greater amount of algae than the shallow site. The larger territory size in the deep site may have resulted from the lower cost of territory defense due to the lower competitor density and from the need to maintain a greater amount of food resources to compensate for lower algal productivity.  相似文献   

12.
Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.  相似文献   

13.
A realistic model of foraging behaviour in stream-living rainbow trout was developed to address some shortcomings of previous tests of optimal foraging theory. The model predicts prey selection based upon both energy-maximization and number-maximization strategies. Trout diet selection on the basis of prey size and prey calorific content was examined under laboratory conditions.
Diet composition was strongly influenced by relative abundance of prey types under all feeding regimes, as predicted by the model. Additional important factors include fish stomach capacity and daily digestive capacity. Experimental results strongly suggest that prey selection in rainbow trout is not based on calorific content. Examination of energy (kJ) obtained from observed diets showed no energy penalties associated with 'suboptimal' food choices, since all fish (regardless of their choices) consumed far more energy than required for their basic metabolic needs.  相似文献   

14.
Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.  相似文献   

15.
CapsuleIndividuals concentrated near forest edges in bigger social groups than in forest interiors and foraged more on pine cones which were more abundant there.

Aims To evaluate differences in food distribution between forest edges and forest interiors and their effects on the non-breeding flocking patterns of Coal Tit populations inhabiting mountain coniferous forests.

Methods We collected cone production data at forests edges and interiors in mountain pine forests located in the Pyrenees (northeast Iberian peninsula). At the same sites, we also quantified Coal Tit abundance, flocking patterns and foraging behaviour by means of paired bird surveys during autumn and early winter.

Results We recorded a larger abundance of pine cones available on trees along forest edges compared with forest interiors. Coal Tit groups were of bigger size along forest edges, although the number of social groups detected did not differ from forest interiors. Our observations on foraging behaviour supported the hypothesis that differences in flock sizes and overall abundances associated with distance to the edge are due to differences in the availability of pine cones and to the heavier use of these foraging substrates by birds along forest edges.

Conclusions Our results suggest that by changing food distribution, edge effects on pine cone production may be significantly involved in local changes in the social structure of the Coal Tit. An increase in resource heterogeneity and local population density may have important implications at a population level, such as favouring mobility of individuals searching for food resources and thus a transient life, and increasing the costs of territory defence to resident individuals.  相似文献   

16.
In species living in social groups, aggression among individuals to gain access to limiting resources can lead to the formation of stable social hierarchies. We tested whether dominance rank in social groups of sponge-dwelling cleaning gobies Elacatinus prochilos in Barbados was determined by physical attributes of individuals or by prior experience of dominance, and examined the foraging consequences of dominance rank. Intraspecific aggression within groups resulted in stable dominance hierarchies that were strongly correlated with fish length. Dominant individuals maintained exclusive territories while subordinate fish occupied broader home ranges. Larger, competitively dominant fish were able to monopolize areas inside the sponge lumen with the highest abundance of the polychaete Haplosyllis spp., a favoured prey item, and achieved the highest foraging rates. The removal of a territorial individual from large groups resulted in a domino-like effect in territory relocation of the remaining fish as individuals moved to the territory previously occupied by the individual just above them in the group hierarchy. Individuals added to existing groups generally failed to gain access to territories, despite being formerly dominant in their original groups. When given the opportunity to choose a location in the absence of larger competitors, gobies frequently preferred positions that were previously defended and that had abundant food. These results suggest that intraspecific competition for resources creates the observed dominance structures and provides support for the role of individual physical attributes in the formation and maintenance of dominance hierarchies.  相似文献   

17.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.  相似文献   

18.
Field studies were conducted to clarify whether variation in food availability among habitats influences population density, and whether population density has a negative effect on foraging success in the orb-web spider, Nephila clavata. Lifetime food consumption per individual (i.e., foraging success) strongly correlated with mean body size of adult females and mean fecundity in populations. Also, there was a positive correlation between foraging success and population density. Since foraging success reflected potential prey availability in the habitat, food resource appeared to be a limiting factor for populations in this spider. Mean fecundity per individual correlated with population density of the following year, suggesting that decreased reproduction is a major component of food limitation on population density. Consistent defferences in mean body size between particular sites were observed over years, while such difference was less obvious in density. Thus, ranking of food abundance among habitats seems to be predictable between years. A field experiment revealed that an artificial increase in population density had no negative effect on the feeding rate of individuals, suggesting that intraspecific competition for food is not important in this species.  相似文献   

19.
1. Rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) are widespread and invasive salmonids with important lethal effects as predators, although indirect effects are also possible. We used stable isotope analyses (δ15N, δ13C) to explore how the density of invasive trout in 25 Patagonian lakes alters the trophic niche (TN) of a widespread native fish, Galaxias platei (Galaxiidae). We also explored how the density of the galaxiid influences the TN of invasive trout. 2. We quantified two aspects of the TN: (i) the proportion of littoral carbon (PL) and (ii) trophic height (TH) (i.e. the ‘height’ at which the fish feeds in the food web). We related these measures of TN in a given species to the density of other species (as estimated by catch‐per‐unit‐effort). 3. As G. platei body size increased, their PL increased (increasing littoral feeding) in several lakes. However, none of the fish species investigated showed changes in PL with increasing density of the other fish species. TH increased with body size in all three species. In addition, the TH of large G. platei declined with increasing trout density and, reciprocally, the TH of large S. trutta decreased with decreasing G. platei density. 4. The reciprocal effects of native and the invasive fish on TH were as large as a shift of one trophic level. This pattern is consistent with an exhaustion of galaxiid prey for both piscivorous G. platei and S. trutta in lakes with high trout density. 5. These finding support the suggested management strategy of culling trout from overpopulated lakes, which should simultaneously protect native fish and enhance a lucrative sport fishery for large trout.  相似文献   

20.
Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号