首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the heat shock response of bacillary cells, HrcA repressor proteins negatively control the expression of the major heat shock genes, the groE and dnaK operons, by binding the CIRCE (controlling inverted repeat of chaperone expression) element. Studies on two critical but yet unresolved issues related to the structure and function of HrcA were performed using mainly the HrcA from the obligate thermophile Bacillus thermoglucosidasius KP1006. These two critical issues are (i) identifying the region at which HrcA binds to the CIRCE element and (ii) determining whether HrcA can play the role of a thermosensor. We identified the position of a helix-turn-helix (HTH) motif in B. thermoglucosidasius HrcA, which is typical of DNA-binding proteins, and indicated that two residues in the HTH motif are crucial for the binding of HrcA to the CIRCE element. Furthermore, we compared the thermostabilities of the HrcA-CIRCE complexes derived from Bacillus subtilis and B. thermoglucosidasius, which grow at vastly different ranges of temperature. The thermostability profiles of their HrcA-CIRCE complexes were quite consistent with the difference in the growth temperatures of B. thermoglucosidasius and B. subtilis and, thus, suggested that HrcA can function as a thermosensor to detect temperature changes in cells.  相似文献   

3.
4.
5.
6.
7.
8.
9.
HrcA, a negative control repressor for chaperone expression from the obligate thermophile Bacillus thermoglucosidasius KP1006, was purified in a His-tagged form in the presence of 6 M urea but hardly renatured to an intact state due to extreme insolubility. Renaturation trials revealed that the addition of DNA to purified B. thermoglucosidasius HrcA can result in solubilization of HrcA free from the denaturing agent urea. Results from band shift and light scattering assays provided three new findings: (i) any species of DNA can serve to solubilize B. thermoglucosidasius HrcA, but DNA containing the CIRCE (controlling inverted repeat of chaperone expression) element is far more effective than other nonspecific DNA; (ii) B. thermoglucosidasius HrcA renatured with nonspecific DNA bound the CIRCE element in the molecular ratio of 2.6:1; and (iii) B. thermoglucosidasius HrcA binding to the CIRCE element was stable at below 50 degrees C whereas the complex was rapidly denatured at 70 degrees C, suggesting that the breakdown of HrcA is induced by heat stress and HrcA may act as a thermosensor to affect the expression of heat shock regulatory genes. These results will help to determine the nature of HrcA protein molecules.  相似文献   

10.
11.
Multiple regulatory mechanisms for coping with stress co-exist in low G+C Gram-positive bacteria. Among these, the HrcA and CtsR repressors control distinct regulons in the model organism, Bacillus subtilis. We recently identified an orthologue of the CtsR regulator of stress response in the major pathogen, Staphylococcus aureus. Sequence analysis of the S. aureus genome revealed the presence of potential CtsR operator sites not only upstream from genes encoding subunits of the Clp ATP-dependent protease, as in B. subtilis, but also, unexpectedly, within the promoter regions of the dnaK and groESL operons known to be specifically controlled by HrcA. The tandem arrangement of the CtsR and HrcA operators suggests a novel mode of dual heat shock regulation by these two repressors. The S. aureus ctsR and hrcA genes were cloned under the control of the PxylA xylose-inducible promoter and used to demonstrate dual regulation of the dnaK and groESL operons by both CtsR and HrcA, using B. subtilis as a heterologous host. Direct binding by both repressors was shown in vitro by gel mobility shift and DNase I footprinting experiments using purified S. aureus CtsR and HrcA proteins. DeltactsR, DeltahrcA and DeltactsRDeltahrcA mutants of S. aureus were constructed, indicating that the two repressors are not redundant but, instead, act together synergistically to maintain low basal levels of expression of the dnaK and groESL operons in the absence of stress. This novel regulatory mode appears to be specific to Staphylococci.  相似文献   

12.
Heat-shock and general stress response in Bacillus subtilis   总被引:16,自引:4,他引:12  
The induction of stress proteins is an important component of the adaptional network of a non-growing cell of Bacillus subtilis . A diverse range of stresses such as heat shock, salt stress, ethanol, starvation for oxygen or nutrients etc. induce the same set of proteins, called general stress proteins. Although the adaptive functions of these proteins are largely unknown, they are proposed to provide general and rather non-specific protection of the cell under these adverse conditions. In addition to these non-specific general stress proteins, all extracellular signals induce a set of specific stress proteins that may confer specific protection against a particular stress factor. In B. subtilis at least three different classes of heat-inducible genes can be defined by their common regulatory characteristics: Class I genes, as exemplified by the dnaK and groE operons, are most efficiently induced by heat stress. Their expression involves a σA-dependent promoter, an inverted repeat (called the CIRCE element) highly conserved among eubacteria, and probably a repressor interacting with the CIRCE element. The majority of general stress genes (class II, more than 40) are induced at σB-dependent promoters by different growth-inhibiting conditions. The activation of σB by stress or starvation is the crucial event in the induction of this large stress regulon. Only a few genes, including lon clpC clpP , and ftsH, can respond to different stress factors independently of σB or CIRCE (class III). Stress induction of these genes occurs at promoters presumably recognized by σA and probably involves additional regulatory elements which remain to be defined.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Our working hypothesis is that the major molecular chaperones DnaK and GroE play central roles in the ability of oral bacteria to cope with the rapid and frequent stresses encountered in oral biofilms, such as acidification and nutrient limitation. Previously, our laboratory partially characterized the dnaK operon of Streptococcus mutans (hrcA-grpE-dnaK) and demonstrated that dnaK is up-regulated in response to acid shock and sustained acidification (G. C. Jayaraman, J. E. Penders, and R. A. Burne, Mol. Microbiol. 25:329-341, 1997). Here, we show that the groESL genes of S. mutans constitute an operon that is expressed from a stress-inducible sigma(A)-type promoter located immediately upstream of a CIRCE element. GroEL protein and mRNA levels were elevated in cells exposed to a variety of stresses, including acid shock. A nonpolar insertion into hrcA was created and used to demonstrate that HrcA negatively regulates the expression of the groEL and dnaK operons. The SM11 mutant, which had constitutively high levels of GroESL and roughly 50% of the DnaK protein found in the wild-type strain, was more sensitive to acid killing and could not lower the pH as effectively as the parent. The acid-sensitive phenotype of SM11 was, at least in part, attributable to lower F(1)F(0)-ATPase activity. A minimum of 10 proteins, in addition to GroES-EL, were found to be up-regulated in SM11. The data clearly indicate that HrcA plays a key role in the regulation of chaperone expression in S. mutans and that changes in the levels of the chaperones profoundly influence acid tolerance.  相似文献   

20.
Negative regulation of bacterial heat shock genes   总被引:18,自引:2,他引:16  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号